5. Пример построения контрольной карты для арифметического среднего с предупреждающими границами с использованием
ГОСТ Р 50779.41–96
25 % концентрацию азота в аммиаке считают нормальной для процесса в статистически управляемом состоянии.
Даны пределы концентрации азота:
Максимально нежелательный уровень несоответствий равен 3 %.
Из предыдущих экспериментальных данных известно, что
1. Определяем значения и .
Значения и находим по формулам
где – квантиль стандартного нормального закона распределения (табл. 11).
Таблица 11
Квантили стандартного нормального распределения
Вероятность, % | 99,99 | 99,90 | 99,00 | 97,72 | 97,50 | 95,00 | 90,00 | 84,13 | 50,00 |
Квантиль | 3,715 | 3,090 | 2,326 | 2,000 | 1,960 | 1,645 | 1,282 | 1,000 | 0,000 |
2. Значение объема выборки для условий примера взято равным 5, т. е.
n =5. Контрольные границы на контрольной карте должны быть построены таким образом, чтобы ARL для процесса в статистически управляемом состоянии () составляла как минимум 300 и для процесса с максимально нежелательным уровнем процесса () – не превышала 12.
Контрольные границы на карте находятся по формуле:
.
Предупреждающие границы находятся по формуле:
Комбинацию коэффициентов, определяющих положение границ регулирования и предупреждающих границ на контрольной карте , , и количество последовательных точек выбираем из таблиц 1–4 [2] (с интерполяцией для значения ), так чтобы и . Результаты представлены в табл. 12.
Таблица 12
Значения коэффициентов
N | |||||
1 | 3 | 3,0 | 1,5 | 620,1 | 10,3 |
2 | 4 | 3,0 | 1,25 | 624,1 | 11,2 |
3 | 3 | 3,25 | 1,25 | 618,6 | 8,8 |
4 | 4 | 3,25 | 1,0 | 904,0 | 10,1 |
Установленные исходные данные приводят к неоднозначности плана контроля (получилось четыре возможных варианта). Поскольку отношение L0/L1 > 50, то выбираем план с минимальным , т. е. третью строку в табл. 2.
Таким образом,
Определяем контрольные границы для карты:
– границы регулирования:
– предупреждающие границы
3. Для условий, приведенных в 1 и 2, были получены следующие значения : 25,1; 25,2; 24,2; 25,6; 24,1; 24,3; 25,0; 25,3; 25,9; 24,7; 25,1; 25,3; 24,9; 25,4; 24,8; 24,7; 25,9; 25,6; 25,7 % (рис. 10).
Рис. 10. Контрольной карта для арифметического среднего с
предупреждающими границами
После 19-й выборки необходимо принять решение о наладке процесса, так как последние три точки (25,9; 25,6; 25,7) находятся в зоне W между предупреждающей границей и границей регулирования.
Следует обратить внимание на то, что две другие соседние точки (24,1 и 24,3) находятся в зоне W+, и корректировка процесса не может быть произведена, так как в соответствии с принятой процедурой этих точек должно быть три.
Корректировка должна быть осуществлена немедленно при первом же значении либо больше 26,45, либо меньше 23,55.
4. Для , , приведенных выше, а также условий, установленных для и , необходимо найти план контроля, дающий наименьший объем выборки. Из колонки табл. 1, соответствующей , находят, что минимальное значение , для которого , равно 1,4 (например, план с параметрами дает план с параметрами дает ).
Отсюда
и n=5.
Заключение
По сути дела статистическое регулирование качества – это текущий контроль за производством и предупреждение брака путем своевременного вмешательства в технологический процесс. Техническим вспомогательным средством статистического регулирования является контрольная карта, позволяющая наглядно отразить ход производственного процесса на диаграмме и таким образом выявить нарушения технологии [10].
При построении контрольных карт важен выбор контролируемого параметра. Предпочтение целесообразно отдавать тем параметрам, которые непосредственно влияют на эксплуатационные характеристики продукции, легко поддаются измерению и на которые можно воздействовать путем регулирования технологического процесса.
В случаях, когда измерение параметров с точностью, необходимой для построения контрольных карт для количественных данных, технически или экономически невозможно, используют карты для альтернативных данных. Кроме того, контрольные карты для альтернативных данных находят применение в крупносерийном и массовом производстве, в условиях которого чаще всего используются такие простейшие средства контроля, как предельные калибры, шаблоны, а также визуальный контроль, основанный на сравнении с контрольным образцом. По существу, при построении контрольных карт для альтернативных данных не требуется знание контролируемого параметра и достаточно установить лишь факт соответствия или несоответствия его установленным требованиям.
Решение о виде контрольных карт для статистического управления технологическим процессом принимает разработчик технологии контрольных операций с учетом конкретных условий производства [5].
Список литературы
1. ГОСТ Р 50 779.40–96. Статистические методы. Контрольные карты. Общее руководство и введение. М.: Изд-во стандартов, 1996. 20с.
2. ГОСТ Р 50 779.41-96 Статистические методы. Контрольные карты для арифметического среднего с предупреждающими границами. М.: Изд-во стандартов, 1996. 24с.
3. ГОСТ Р 50 779.42–99. Статистические методы. Контрольные карты Шухарта. М.: Изд-во стандартов, 1999. 32с.
4. Ефимов В.В. Статистические методы в управлении качеством продукции: Учебное пособие. Ульяновск: УлГТУ, 2003. 134 с.: ил.
5. Жулинский С.Ф., Новиков Е.С., Поспелов В.Я. Статистические методы в современном менеджменте качества. М.: Фонд «Новое тысячелетие», 2001. 208 с.: ил.
6. Мхитарян В.С. Статистические методы в управлении качеством продукции. М.: Финансы и статистика, 1982. 119с.
7. Р 50–601–19–91. Рекомендации. Применение статистических методов регулирования технологических процессов. М.: Изд-во стандартов, 1992. 24 с.
8. Р 50–601–32–92. Рекомендации. Система качества. Организация внедрения статистических методов управления качеством продукции на предприятии. М.: Изд-во стандартов, 1992. 21 с.
9. Шиндовский Э. Статистические методы управления качеством. Контрольные карты и планы контроля: пер. с нем. В.М. Ивановой, И.О. Решетниковой. М.: Мир, 1976. 597 с.: ил.
10. Шторм Р. Теория вероятностей. Математическая статистика. Статистический контроль качества: пер. с не. под ред. Н.С. Райбмана. М.: Мир, 1970. 368 с.: ил.
... приборов и визуальные наблюдения за процессом позволяют оперативно реагировать на возможные отклонения, во многом обеспечивает качество сварных соединений. При сварке ответственных конструкций используют системы автоматического управления и регулирования параметров режима с помощью датчиков автоматического контроля, встроенных в сварочное оборудование. В некоторых случаях ведут непрерывную запись ...
... инструмент применяют тогда, когда обработку производят инструментом, конструкция и размеры которого утверждены ГОСТом и ОСТом или имеются в нормалях промышленности. При разработке технологических процессов изготовления деталей следует использовать нормализованный инструмент как наиболее дешевый и простой. Специальный режущий инструмент применяют в тех случаях, когда обработка нормализованным ...
... такой контроль очень дорог. Поэтому от сплошного контроля переходят к выборочному с применением статистических методов обработки результатов. Однако такой контроль эффективен только тогда, когда технологические процессы, будучи в налаженном состоянии, обладают точностью и стабильностью, достаточной для «автоматической» гарантии изготовления бездефектной продукции. Отсюда встает необходимость ...
... и организации процесса контроля. Статус контроля В данном курсовом проекте техническим заданием предусмотрена разработка этапов процесса приемочного контроля детали редуктора цилиндрического соосного двухступенчатого двухпоточного – зубчатое колесо и активный контроль на операции шлифование отверстия. Методы активного и приемочного контроля взаимно дополняют друг друга, сочетаются. Активный ...
0 комментариев