13. Задания пунктов 10 – 12 повторить 5 раз.

Обработка результатов измерений

1.По формуле (11) рассчитать ускорение груза m1 вниз по наклонной плоскости для каждого значения угла a.

2.Построить график зависимости ускорения от угла наклона.

3.Определить по графику величину tgaкр экстраполяцией графика.

4.Рассчитать значение скорости движения грузов m1 и m2 в момент касания верхнего фиксатора грузом m1 по формуле (12) и по данным таблицы 2.

5.Рассчитать изменение кинетической энергии тела m1 при его движении по наклонной плоскости.

6.Определить работу всех сил, действующих на груз m1 при его движении по наклонной плоскости, по формуле (10).

7.Сравнить величины.

DW = m1v2/2 и Авсехсил = At + Amlg + AFтр

8. Определить абсолютную погрешность DWK и А всех сил

Контрольные вопросы

1.Запишите основной закон динамики поступательного движения в дифференциальной форме.

2.Запишите систему уравнений, описывающих динамику движения груза по наклонной плоскости.

3.Получите формулу (4).

4.В чем заключается явление трения?

5.Какие виды трения вы знаете, какие причины вызывают трение?

6.Получите формулу для расчета погрешности косвенного измерения DW и Авсех сил.

7.Как изменится система уравнений, если учитывать массу ролика?


Лабораторная работа №5

 

ОПРЕДЕЛЕНИЕ ОБЪЁМА И ПЛОТНОСТИ ТЕЛА, ВЫЧИСЛЕНИЕ ПОГРЕШНОСТЕЙ

 

Цель работы: Ознакомление с методами измерения линейных размеров, объёмов тел, их масс и плотностей материалов. Определение погрешностей измерений.

Приборы и принадлежности: микрометр, штангенциркуль, детали для измерения, весы и разновесы.

Нониусом называется дополнение к обычному масштабу (линейному или круговому), позволяющее повысить точность измерения.

Техника непосредственного измерения длин и углов достигла к настоящему времени большого совершенства. Сконструирован ряд специальных приборов, так называемых компараторов, позволяющих измерять длину с точностью до одного микрона (1мкм=10–6 м). Большинство из них основано на применении микроскопа и некоторых других оптических приспособлений, но при этом они всегда снабжаются нониусами или микрометрами. В ряде случаев требуемая относительная точность измерения длины бывает такова, что можно удовлетвориться абсолютной точностью в сотые или даже в десятые доли миллиметра, а для углов – минутами или долями минут. Тогда для измерения можно пользоваться обычными масштабными линейками и угломерами, снабженными нониусами. Примерами таких приборов являются штангенциркуль, буссоль, кипрегель.

Линейным нониусом называется маленькая линейка с делениями, скользящая вдоль большой линейки (также с делениями), называемой масштабом (рис. 5, а). Деления на нониус наносятся так, что одно его деление составляет


делений масштаба, где m – число делений нониуса.

Именно это позволяет, пользуясь нониусом, производить отсчёты с точностью до  части наименьшего деления масштаба.

Пусть расстояние между соседними штрихами масштаба y а между соседними нониусами x, Можно записать, что ; отсюда получаем .

Величина

 (1)

носит название точности нониуса, она определяет максимальную его погрешность. При достаточно мелких делениях масштаба деление нониуса делают более крупным, например:

, что даёт mx1 = (2m – 1)y.

Точностью такого нониуса по-прежнему является величина . В любом положении нониуса относительно масштаба одно из делений первого совпадает с каким-либо делением второго. Отсчёт по нониусу основан именно на способности глаза фиксировать это совпадение делений нониуса и масштаба.

Рассмотрим теперь процесс измерения при помощи линейного нониуса. Пусть L – измеряемый отрезок (рис. 5, а). Совместим его с началом нулевого деления основного масштаба. Пусть при этом конец его окажется между К и (К+1) делением этого масштаба. Тогда можно записать

,

где DL – неизвестная пока доля k-го деления масштаба. Приложим теперь к концу отрезка L наш нониус так, чтобы нуль нониуса совпал с концом этого отрезка. Так как деления нониуса не равны делениям масштаба, то на нём обязательно найдется такое деление n, которое будет ближе всего подходить к соответствующему (k+n)-му делению масштаба. Как видно из рис. 5,б,  и вся длина его будет равна , или, согласно (1):

. (2)

То есть длина измеряемого отрезка L равна произведению числа целых делений масштаба k на цену его деления y плюс произведение точности нониуса  на номер деления нониуса n, совпадающего с некоторым делением масштаба.

Погрешность, которая может возникнуть при таком методе отсчёта, будет обусловливаться неточным совпадением n-го деления шкалы нониуса с (k+n)-м делением масштаба, и величина его не будет превышать Dx/2, ибо при большем несовпадении этих делений одно из соседних делений (справа или слева) имело бы несовпадение меньше чем на Dx/2, и мы произвели бы отсчёт по нему. Таким образом, можно сказать, что погрешность нониуса равна половине его точности.

Длина делений масштаба и число делений нониуса, а следовательно, и точность нониуса бывают самыми разными. Круговой нониус, в принципе, ничем не отличается от линейного. Он представляет собой небольшую дуговую линейку, скользящую вдоль круга (лимба), разделенного на градусы или на ещё более мелкие деления в количестве m, общая длина которых равна (m-1) делениям лимба, т.е.

,

где a и b – выраженные в градусах или минутах цены делений нониуса и наименьшего деления лимба. Точность кругового нониуса выражается формулой, аналогичной формуле (1):

.

Отсчитываемые от нуля лимба углы будут вычисляться по формуле

.

Во многих случаях для облегчения отсчёта нониусы снабжаются скрепленными с ними лупами, при отсутствии таковых рекомендуется пользоваться для отсчёта обыкновенными ручными лупами.


Упражнение №1

Измерение толщины металлического параллелепипеда микрометром

Принадлежности: микрометр, металлический параллелепипед.

Описание микрометра. Микрометр служит для измерения диаметров проволок, пластинок небольшой толщины и т. п. Он имеет вид тисков, в которых измеряемый объект зажимается с помощью винта. Ход винта обыкновенно бывает равен 1 или 0,5 мм. На стержне винта укреплен барабан с нанесенной на нем шкалой, имеющей 50 или 25 делений. При зажатом винте нуль барабана стоит против нуля линейной шкалы, измеряемый объект (предмет) помещают между винтом и противоположным ему упором; затем, вращая винт за головку, доводят его до соприкосновения с предметом. По линейной шкале отсчитывают миллиметры, а по шкале барабана – сотые доли миллиметра.

Главным источником ошибок является неравномерность нажатия винта на измеряемый предмет. Для устранения этого недостатка рукоятка микрометра снабжена специальной головкой – «трещоткой», позволяющей создавать небольшое мерительное давление на измеряемый объект. Действие подобных приспособлений основано на трении, возникающем между стержнем винта и рукояткой, поворачивающей винт.

Измерения. Прежде чем пользоваться микрометром, необходимо убедиться, что он исправен – нули его шкал совпадают. Если шкала сбита и показание микрометра отлично от нуля, то соответствующее показание нужно заметить: его следует вычитать из всех измеряемых значений.

Пластинку помещают между винтом и противоположным упором; вращением барабана подводят торец винта к пластинке Окончательное нажатие винтом на пластинку следует делать только «трещоткой». Момент нажатия фиксируется слабым треском. После этого треска дальнейшее вращение рукоятки бесполезно. Производят отсчет по шкалам: миллиметры по линейной шкале, доли миллиметров – по шкале барабана.

Толщину пластинки необходимо измерить вблизи каждого из ее четырех углов 5 раз. Результаты занести в табл. 1.

Таблица 1

Вычисление плотности прямоугольного бруска

Ширина а, мм

Длинна в, мм

Высота с, мм

Масса m, кг

Плотность

p, кг/м3

аi

а

i

i

bi

b

Dbi

Dbi

ci

c

Dci

Dci

mi

Dmi

p

D p

1
2
3
4
5

Упражнение №2

Определение объёма цилиндра и плотности его материала при помощи штангенциркуля

Принадлежности: штангенциркуль, измеряемый предмет, весы.

Описание штангенциркуля. Штангенциркуль (рис. 5, б) состоит из разделенного на миллиметры масштаба, вдоль которого может перемещаться ножка с зажимным винтом, служащим для ее закрепления: в ее обойме против делений масштаба сделан вырез, на скошенном и прилегающем к масштабу крае которого нанесен нониус; когда ножки сдвинуты вплотную, то нуль нониуса совпадает с нулем масштаба. Неподвижная ножка, укрепленная в начале масштаба перпендикулярно его длине, служит упором для измеряемого тела.

Измерения. Для определения объема цилиндра необходимо определить его геометрические размеры: длину и диаметр. Для определения плотности вещества трубки необходимо (кроме объема) определить и ее массу.

Определение объема. Измерение длины производят следующим образом. Достаточно раздвинув ножки штангенциркуля, между ними помещают цилиндр. Ножку подводят так, чтобы цилиндр был слегка зажат, и производят отсчет. Так как ножка, а следовательно, и путь нониуса переместились на длину трубки, то отсчитывают по масштабу целое число миллиметров до нуля нониуса и смотрят, какое деление нониуса совпадает с некоторым делением масштаба. Измерение повторяют несколько раз, повернув перед каждым из них цилиндр вокруг его оси на некоторый угол (около 45°).

Далее производят измерение диаметра цилиндра. Одинаковое число раз на том и другом конце цилиндра измеряют два взаимно перпендикулярных диаметра, слегка зажимая цилиндр между ножками штангенциркуля и держа его при этом перпендикулярно к длине масштаба. Результаты занести в табл. 2. Из всех результатов измерения берут среднее значение.

Таблица 2

Вычисление плотности вещества цилиндра

Диаметр d, мм

Высота h, мм

Масса m, кг

i

di

Ddi2

Ddi

hi

Dhi

Dhi2

mi

Dmi

Dmi2

  

; .


При измерении внутренних диаметров ножки штангенциркуля вводят в трубку и разводят настолько, чтобы обе они прилегли к внутренним стенкам трубки; производят отсчет. Измерение повторяют несколько раз, поворачивая перед каждым из них трубку вокруг ее оси на некоторый угол (около 45°). Если штангенциркуль не приспособлен специально для измерения внутреннего диаметра трубки, то необходимо принять во внимание толщину обеих ножек; эта толщина обычно указывается на самом штангенциркуле.

Из результатов измерений по элементарным геометрическим формула вычисляют объем цилиндра.

Определение плотности вещества цилиндра. Измерение массы цилиндра производят при помощи весов. На одну чашу кладут цилиндр, на другую – разновесы. Их подбирают так, чтобы плечи весов оказались в равновесии. По результатам измерения массы и объема цилиндра определяют плотность его материала

.

 

Замечание.

Количество измерений в каждом из опытов указывается преподавателем.

Обработка результатов измерений производится в соответствии с требованиями методических указаний: «Методика обработки данных измерений физических величин». С ними следует ознакомиться до начала выполнения измерений.

Контрольные вопросы

1.Как произвести измерение линейных размеров тела с помощью микрометра, штангенциркуля?

2.Как определяется точность нониуса?

3.Каковы причины возникновения погрешностей при измерении линейных размеров тел, их объемов, плотностей, массы?


Лабораторная работа №6

 

ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ И ПРОВЕРКА ТЕОРЕМЫ ШТЕЙНЕРА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

 

Цель работы: изучить один из экспериментальных методов определения моментов инерции тел.

Приборы и принадлежности: трифилярный подвес, секундомер, штангенциркуль; набор тел подлежащих измерению.

Момент инерции I твердого тела относительно некоторой оси определяется выражением

,

где r – расстояние элемента массы dm от оси вращения.

В простых случаях величину момента инерции можно определять расчетом, а в сложных его приходится искать экспериментальным путем. Одним из удобных методов измерения моментов инерции твердых тел является метод трифилярного подвеса.

Теория трифилярного подвеса

Схема трифилярного подвеса приведена на рис. 6.

Подвижная платформа Р' подвешена к платформе Р на трех симметрично расположенных нитях АА', ВВ'., СC'. Платформа Р позволяет возбудить в системе крутильные колебания. Вращательный импульс, необходимый для начала крутильных колебаний, сообщается платформе путем специального приспособления, которое находится сверху прибора, приводящего в движение рычажок, связанный с диском. Этим достигается почти полное отсутствие других крутильных колебаний, наличие которых затрудняет измерения. Для удобства отсчета колебаний на платформе имеется метка, против которой при покоящейся платформе устанавливается указатель – проволока на штативе.

При повороте нижней платформы Р' (относительно верхней) вокруг вертикальной оси на некоторый угол j возникает момент сил, стремящийся вернуть платформу в положение равновесия. Если пренебречь трением, то на основании закона сохранения энергии для колеблющейся системы можно записать:

, (1)

где  – кинетическая энергия системы, - потенциальная энергия системы, I – момент инерции платформы вместе с исследуемым телом, М – масса платформы с телом, z0 – начальная координата точки О' (при (j=0), z – координата точки О при текущем значении j. Точкой обозначено дифференцирование по времени.

Как следует из рис. 6, координаты точки С в системе координат
(x, y, z) равны (r,0,0), а точка С' имеет координаты (Rcosj0, Rsinj0, Z), где j0 – максимальный угол отклонения. Расстояние между точками С и С' равно длине нити l. Записывая l через значение ее координат (l2=x2+y2+z2, где x2=(Rcosj0-r)2, y2=(Rsinj0)2, z2=z2), получим:

 

(R cosj0 – r)2+ (R sinj0)2+ z2=l2

z2=l2-R2-r2+2Rrcosj0=Z02 –2Rr(1-cosj0),

так как Z02=l2-(R-r)2= l2-R2+2Rr-r2.


Учитывая, что для малых углов отклонения j0 cosj0 » 1-j02/2, получим

Z2=Z02-Rrj02.(2)

Приравнивая корень из выражения (2), найдем, что при малых углах j

. (3)

Из (3) следует, что , (4)

так как Z0=l. Считая, что платформа совершает гармонические колебания, можем записать зависимость углового смещения в виде:

, (5)

где j0 – амплитуда отклонения, Т – период колебания, t – текущее время. Угловая скорость, являющаяся первой производной по времени, выражается так:

. (6)

В момент прохождения через положение равновесия

t=0, T/2,T,3T/2, ….(т.к. cos(2p/T) = ±1),


абсолютное значение этой величины будет

. (7)

На основании вышеизложенного – выражений (1) и (7) – имеем

. (8)

Подставляя в (8) выражение (4), получим

,

откуда (9)

По формуле (9) может быть определен момент инерции платформы и тела, положенного на нее, так как все величины в правой части формулы могут быть непосредственно измерены. Формула (9) справедлива при отсутствии в системе потерь энергии на трение, или при t>>T, где Т – период колебаний системы, а t – время, в течение которого амплитуда колебаний платформы заметно уменьшается (в 2 – 3 раза).

Параметры трифилярного подвеса.

r = (0,06±0,001) м; l = (0,61±0,002) м;

R = (0,12±0,001) м; m0 = (0,481±0,01) кг – масса пустой платформы.

Проверка теоремы Штейнера методом крутильных колебаний

Для однородных и симметричных тел справедлива теорема Штейнера, которая формулируется следующим образом: момент инерции I относительно произвольной оси равен сумме момента инерции I0 относительно оси, параллельной данной и проходящей через центр инерции тела, и произведения массы тела m на квадрат расстояния d между осями:

I=I0 +md2.(10)

Справедливость теоремы Штейнера можно проверить при помощи трифилярного подвеса, для чего необходимо иметь два совершенно одинаковых тела. Оба тела симметрично располагают на платформе и определяют их момент инерции при таком расположении. Половина этой величины и будет давать момент инерции одного тела, находящегося на фиксированном расстоянии от оси вращения. Зная это расстояние, массу тела и момент инерции тела, положенного в центре платформы, можно проверить теорему Штейнера

I=(I2-I0)/2=+md2, (11)

где I2 – момент инерции двух грузов с платформой; I0 – момент инерции пустой платформы;  – момент инерции первого груза без платформы; I – момент инерции первого груза без платформы, расположенного на расстоянии d от оси вращения.

Тела на платформе необходимо класть строго симметрично – так, чтобы не было перекоса платформы, для чего на платформе нанесены цилиндрические окружности на определенном расстоянии друг от друга.

Измерения

Сначала по формуле (9) определяют момент инерции пустой платформы I0. Так как величины l, R, r и масса платформы m0 даются как постоянные прибора, то определяют только время периода колебаний пустой платформы Т0. Для этого сообщают платформе вращательный импульс и при помощи секундомера измеряют время 50 полных колебаний, что дает возможность достаточно точно определить величину периода Т0. После этого нагружают платформу в центре исследуемым телом, масса которого должна быть предварительно определена путем взвешивания, и вновь определяют период колебаний Т всей системы. Затем, пользуясь формулой (9), вычисляют момент инерции I1 всей системы, принимая ее массу m равной сумме масс тела и платформы. Величина момента инерции тела  определяется как разность =I1 – I0.

Далее нагружают платформу двумя одинаковыми телами, расположенными симметрично, и по формуле (9) определяют их момент инерции вместе с платформой I2. Остальные результаты находят с помощью соответствующих вычислений.

При измерениях недопустимо пользоваться амплитудами колебаний, большими чем 5 – 6 градусов. Все данные измерений и расчетов свести в таблицу, проверить соотношение (11).

В работе использовать систему единиц СИ.

t0, с

(50

колебаний платформы)

T0, с

I0,

кг/м2

t0, с

(50 колебаний

с грузом 200 г

в центре

платформы)

T1, с

I0,

кг/м2

t0, с

(50 колебаний

с грузом 400 г

по краям

платформы)

T2, с

I0,

кг/м2

1

2

3

4

5

t0

t1

t2


Период , где N = 50.

 

Контрольные вопросы

1.Что называется моментом инерции тела? В каких единицах измеряется момент инерции тела?

2.Выведите рабочую формулу. Какие упрощающие предположения следует использовать при выводе?

3.Справедлив ли указанный метод при определении момента инерции, если его центр инерции не лежит на оси вращения системы?

4.Сформулируйте и докажите теорему Штейнера.

Рекомендуемая литература


Информация о работе «Законы сохранения механики»
Раздел: Физика
Количество знаков с пробелами: 55849
Количество таблиц: 12
Количество изображений: 1

Похожие работы

Скачать
41956
0
0

... о невероятных ухищрениях человеческого ума. Первый до сих пор известный достоверный документ об "осуществлении" идеи вечного двигателя относится к XIII веку. Еще до установления закона сохранения энергии в 1775 году было сделано заявление французской Академии, в котором говорилось о невозможности создания вечного двигателя. Вследствие чего Академия отказывалась принимать впредь подобные проекты ...

Скачать
38328
0
0

... а я не вижу оснований считать сохранение заряда более фундаментальным, чем сохранение анергии и импульса". В 1931 г. на физической конференции в Пасадене Паули доложил ученым о своей интерпретации ?-распада: "Законы сохранения выполняются, так как испускание ?-частиц сопровождается проникающей радиацией из нейтральных частиц... Сумма энергий ?-частицы и нейтральной частицы..., испущенных ядром в ...

Скачать
26899
0
0

... оно было бы совершенно бесполезно по отношению к другим объектам, предлагаемым обычно творцами вечного движения..» Здесь (правда, применительно только к механическому движению) закон сохранения «силы» и вытекающая из него невозможность вечного двигателя первого рода выражены совершенно четко. И далее: «...Такой способ исследования, несомненно, дорого обходится; он уже разрушил много семей. Часты ...

Скачать
22154
0
0

... , имеющие электрический заряд Q = -1 и Q = 1 соответственно. Также являются стабильными частицами нейтрино и антинейтрино, т.к. это самые легкие носители лептонных зарядов Le, , .   3. СВЯЗЬ ЗАКОНОВ СОХРАНЕНИЯ С СИММЕТРИЕЙ СИСТЕМЫ Одним из важных открытий современного естествознания является тот факт, что все многообразие окружающего нас физического мира связано с тем или иным ...

0 комментариев


Наверх