1.2.2 Из истории задач с одинаковыми цифрами

Первое упоминание о подобных задачах можно найти в отечественной книге «Занимательные и увеселительные задачи, изданные Иваном Буттером». Символично, что общее количество заданий сборника представляет собой число, состоящее из одинаковых цифр: 111.

В 1844 году книга И. Буттера, включающая те же 111 забавных головоломок, была переиздана. В пособиях XIX века, написанных другими отечественными авторами, аналогичных задач нам пока найти не удалось.

Из зарубежных авторов глубоко исследовал задания с одинаковыми Цифрами Г. Э. Дьюдени. В книге «520 головоломок» он отмечает:

«Меня постоянно спрашивают о старой головоломке «Четыре четвёрки». Я опубликовал её в 1899 г.Формулируется головоломка так:

«Найти все возможные числа, которые можно получить из четырёх четвёрок (не больше и не меньше) с помощью различных арифметических знаков».

Например, число 17 можно представить в виде

4-4 + 4:4

и т. д. Аналогичным образом можно записать все числа до 112 включительно, используя лишь знаки сложения, вычитания, умножения, деления.

В задаче «Двадцать четыре» Г. Э. Дьюдени указывает: «В одной книге было написано:

«Запишите число 24 с помощью трёх одинаковых цифр, отличных от 8.»

Там же приводился ответ:

22 + 2 = 24.

Теперь рассмотрим наиболее интересные задачи с одинаковыми цифрами, опубликованные в отечественных изданиях XX столетия. Самым примечательным трудом начала прошлого века стал трёхтомник Е. И. Игнатьева «В царстве смекалки, или Арифметика для всех: Опыт математической хрестоматии: Книга для семьи и школы».

В «Книге 2» заданиям с одинаковым цифрами отведён целый раздел, названный «Новый род задач». В ней приведено пять головоломок, которые с той поры кочуют из сборника в сборник. Снова цитируем Е. И. Игнатьева:

«Задача 47-я. Написать 2 тремя пятёрками». Один из двух ответов: (5+5): 5.

«Задача 48-я. Написать 5 тремя пятёрками».

Из десяти ответов два отвечают рассматриваемой тематике:

5+ 5-5 и 5*(5: 5).

К ответам Е. И. Игнатьева можно добавить также такие решения:

5:(5:5)и5-(5-5).

«Задача 49-я. Написать 31 пятью тройками. Решение,

Эта задача гораздо сложнее предыдущих. Она не нова, и обыкновенно считают, что она имеет всего три решения». В ряду предложенных ответов:

33-3 + 3 :ЗиЗЗ-(3 + 3):3.

Хотя Е. И. Игнатьев и озаглавил раздел «Новый род задач», он признал, что «Задача 49» была известна ранее. Интересно, отечественных или зарубежных предшественников имел в виду автор? Во многих других работах отечественных математиков конца XIX - начала XX веков задачи с одинаковыми цифрами не упоминаются. Например, в книгах С. А. Рачинского «1001 задача для умственного счета: Пособие для учителей сельских школ», Д. Н. Горячева, А. М. Воронца «Задачи, вопросы и софизмы для любителей математики».

Вскоре после выхода в свет книг Е. И. Игнатьева головоломки с цифрами стали популярны в России и появились на страницах пособий многих авторов и составителей. В их числе Н. Н. Аменицкий и И.П. Сахаров, написавшие книгу «Забавная арифметика: Хрестоматия для развития сообразительности и самодеятельности детей в семье и в школе». Если в первом издании хрестоматии задачи с одинаковыми цифрами отсутствовали, то уже в следующем - расширенном, вышедшем в трёх выпусках, и всех последующих они появились. Приведём цифровые головоломки по третьему изданию, не отличающемуся от второго:

10. а) Постарайтесь изобразить число 31 при помощи шести (или пяти) троек.

б) Изобразите число 100 при помощи четырёх одинаковых цифр» Вот какие ответы даны в этой книге: 10. а) 3 • 3 • 3 + 3 + 3 : 3; 33 - 3 + 3 : 3 и 33 - (3 + 3): 3.

6) 99 + 9 : 9.

Обратите внимание на то, что в задаче 10.а), в отличие от книги Е. И. Игнатьева, требуется изобразить число 31 не только пятью, но и шестью тройками, а в ответе на головоломку 10.6), в отличие от книги И. Буттера, после числа 99 стоит знак «плюс».

Задания из трёхтомника Е. И. Игнатьева использовал и А. В. Сатаров в четырёх брошюрах, вышедших под общим названием «Живая арифметика в часы досуга: Пособие семье и школе для развития смекалки в детях». В «Книге второй» автор поместил три задачи с одинаковыми цифрами: «14. Напишите 2 тремя пятёрками.

15. Напишите 5 тремя пятёрками;

16. Как изобразить 31 пятью тройками?»

А в «Книге третьей» А. В.Сатаров привёл ещё одно задание:

«Напишите число 100 четырьмя одинаковыми цифрами».

При этом, как А. В. Сатаров, так и Н. Н. Аменицкий с И. П. Сахаровым

в ответах использовали только действия сложения, вычитания, умножения и

деления.

1.2.3 Из истории головоломок с неповторяющимися цифрами

Задачи с неповторяющимися цифрами встречаем в замечательном отечественном трёхтомнике Е. И. Игнатьева «В царстве смекалки, или Арифметика для всех: Опыт математической хрестоматии: Книга для семьи и школы». В «Книге 1» приведена:

«Задача 32-я: Написать число 100 посредством девяти различных значащих цифр».

56 + 8 + 4 + 3 = 71+29=100».

Здесь Е. И. Игнатьев разъясняет: «Как видим, в предпоследнем решении допущен некоторый «фокус». Сначала из шести разных цифр составлено три числа, дающих в сумме 98 - число, опять-таки составленное из двух новых цифр, и к нему прибавляется число, изображённое недостающей цифрой 2. В сумме получается требуемое число 100. Подобно же составлено и последнее решение».

Интересно, что почти такую же задачу приводит И. Я. Герд в «Сборнике игр и полезных занятий для детей всех возрастов с предисловием для родителей и воспитателей», раздел «Задачи»:

«17. Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8 и 9 такие числа, чтобы через сложение получить ровно 100».

При этом в ответе приводится только одно решение, немного отличающееся от указанных Е. И. Игнатьевым:

15 + 36 + 47-98 + 2=100.

Нетрудно найти и другие решения с «фокусом» помимо тех, которые присутствуют в пособиях Е. И. Игнатьева и И.Я. Герда:

73 + 10 + 6 + 5 + 4 = 98 + 2= 100;

70 + 16 + 3 + 4 + 5 = 98 + 2= 100;

53 + 8 + 4 + 6 = 71+29=100;

45 + 37+ 16 = 98 + 2= 100;

58 + 3 + 4 + 6 = 71+ 29=100;

47 + 36+15=98 + 2= 100 и т. п.

Еще раньше головоломку о числе 100 привёл классик занимательной математики американец С. Лойд, в его книге «Математическая мозаика».

Как видно, ответы на заинтересовавшие головоломки из книг Е. И. Игнатьева и С. Лойда либо очень сложны, либо не вполне корректны.

Целям книги И.Г. Сухина «Занимательные материалы» больше соответствует задание, которое привёл А. В. Сатаров в четырёхтомнике «Живая арифметика в часы досуга: Пособие семье и школе для развития смекалки в детях». В «Книге второй» он опубликовал следующую задачу: «11. Составьте из первых семи цифр: 1,2, 3,4,5,6,7 такие четыре числа, чтобы при сложении их получить ровно 100; при этом брать какую-либо цифру два или три раза нельзя. Ответ: Числа, удовлетворяющие условиям задачи, таковы: 2, 15, 36, 47. Действительно: 2 + 15 + 36 + 47 = 100. Возможны и другие решения, например: 2+ 17 + 35 + 46=100». В данной задаче очень много решений. Вот ещё некоторые из них:

5 + 12 + 37 + 46; 6+ 15 + 32 + 47; 7+ 16 + 35+42.

Очевидно, что иные решения легко получить перестановкой цифр в слагаемых (т. е. вместо 35 + 42 можно написать 32 + 45 и т. д.).

 

1.2.4 Из истории задач о переливании жидкостей

Практически ни один классический сборник, связанный с играми и развлечениями, не обходится без раздела «Дележи», причём заметное место в нём занимают задачи о переливании жидкостей из сосуда в сосуд.

К сожалению, большинство подобных старинных головоломок сложны, и поэтому не подходят для начальной школы. Как это ни удивительно, но в отечественных учебных пособиях сравнительно простых заданий данного класса практически нет. А ведь не подлежит сомнению, что они помогут детям в занимательной форме быстрее освоить действия сложения, вычитания и попрактиковаться в комбинаторике.

Лишь одну доступную детям младшего школьного возраста задачу находим в пособии для учителей М. Б. Балка «Организация и содержание внеклассных занятий по математике»:

«Имея 2 бидона на 4 и 5л, можно ли налить из водопроводного крана в ведро 3 л. воды? (Ёмкость ведра не меньше 3 л.) Ответ: можно».

Быстрейшим путём задача решается так: Заполняется водой четырёхлитровый бидон, затем вода переливается в пятилитровый, снова вода доверху наливается в меньшую ёмкость, и из меньшей 1 л отливается в большую. В результате в четырёхлитровом бидоне будет 3 литра воды.

Ещё две «водяные» головоломки приводятся в разделе «Задачи-смекалки» пособия для учителей 1-11 классов А. А. Свечникова и П. И. Сорокина «Числа, фигуры, задачи во внеклассной работе»:

«111. Как набрать из водопровода 6л воды, пользуясь двухлитровой банкой и чайником, в который входит 5л?

Решение: Напиваем в банку 2 раза по 2 л и переливаем в чайник, затем ещё раз напиваем в банку 2 л.

136. Как имея банку вместимостью 4 л и бидон -9 л, набрать из реки точно 7 л воды?»

Оптимальное решение второй задачи в пособии не даётся. Вот оно: Два раза заполняем банку водой и переливаем по 4 л воды из банки в бидон, снова наполняем банку и добавляем 1 л из неё в бидон, после этого все 9 л воды из чайника выливаем в раковину, и в бидон переливаем оставшиеся в банке 3 л, снова заполняем четырёхлитровую банку водой из реки и получаем требуемые (суммарные)

7л = Зл + 4л.

Непросто определить, в каком старинном трактате впервые появились задачи на переливание жидкостей, которые можно использовать при изучении темы «Величины» в начальной школе. Пожалуй, самая известная из них опубликована более семи веков назад. Познакомимся с ней:

«В одном средневековом сочинении восходящим к середине 13-го столетия, предлагается такого рода задача: Господин послал своего слугу в ближайший город купить 8 мер вина. Когда слуга, выполнив поручение, собирался домой, ему повстречался другой слуга, которого господин тоже посла! за вином. «Сколько у тебя вина?» — спрашивает второй слуга. «8 мер», — отвечает тот. «Мне тоже нужно купить вина». «Ты уже ничего не получишь, так как в городе больше вина нет», — заявляет первый. Тогда второй слуга просит его поделиться с ним вином и показывает ему имеющиеся при нём два сосуда, один в 5, другой в 3 меры. Как произвести делёж: при помощи этих трёх сосудов?».

Приведём ход кратчайшего решения, включающего 7 операций переливания, обозначив «трёхмерный» сосуд, как первый, «пятимерный» назовём вторым, а «восьмимерный» — третьим.

Итак: 1. Из третьего во второй отливаем 5 мер.

2.  Из второго в первый -— 3 меры.

3.  Из первого в третий переливаем 3 миры.

4. Из второго в первый — 2 меры.

5. Из третьего во второй — 5 мер.

6. Из второго в первый — 1 меру.

7. Из первого в третий — 3 меры.

В результате во втором и третьем сосудах получается по 4 меры вина. Широкую известность эта задача получила после публикации двумя изданиями сочинения К. Баше «Игры и задачи, основанные на математике». На русском языке книга К.Баше была издана лишь в 19-м веке, да и то в сокращенном виде.

Безусловно, и до 1877 года задача о сосудах встречалась на страницах отечественных книг. Указанную головоломку встречаем в сочинении «Гадательная арифметика для забавы и удовольствия». Задача №24 имеет следующий вид:

«Сосуд, наполненный восьмью кружками вина, разлить без меры на две равные части по сосудам, из коих в один входит 5 кружек вина, а в другой 3».

Эту задачу можно включать при введении понятия «меры».

Немного позднее задачу привели в книге «Библиотека учёная, экономическая, нравоучительная, историческая и увеселительная в пользу и удовольствие всякого звания читателей: Часть I». В разделе «Математические и физические увеселения на стр. 261 читаем:

«Некто, имея бутыль, наполненную 8 галенками хорошего вина...» и т.д.

Данная задача есть и в книге И. Буттера «Занимательные и увеселительные задачи, изданные Иваном Буттером». Усложнённые варианты головоломки находим в задачах №№ 18-22.

Публиковались ли в старину более простые задачи данной тематики? Ответ на этот вопрос проливают следующие строки из работы У. Болла и Г. Коксетера «Математические эссе и развлечения»:

«...Упомянем ещё несколько задач, которые веками входили в почти каждое собрание математических развлечений... Первый пример даёт хорошее представление о целом классе подобных задач. Некто отправился к источнику за водой с двумя кувшинами ёмкостью в 3 и 5 пинт. Как сможет он принести домой ровно 4 пинты воды? Решение здесь не составляет никакого труда».

Решение задачи в книге не приводится. С помощью наименьшего количества переливаний цели можно добиться следующим образом: Заполняется водой из источника больший кувшин, Зл из него переливаются в меньший и выливаются. 2л воды, оставшиеся в пятилитровом сосуде, перемещаются в трёхлитровый. Больший кувшин вновь наполняется водой из источника, 1л из него отливается в меньший кувшин. Теперь в пятилитровом сосуде находится ровно 4л воды.

Отметим, что именно с решением одной из сложных задач о переливаниях, связывают раскрытие математических способностей выдающегося французского математика С. Д. Пуассона. В задаче, предложенной юному Пуассону, ёмкость сосудов в отличие от хрестоматийной задачи составляла не 3, 5, 8 (мер), а 5, 8. 12 (пинт; пинта — мера жидкости):

«Некто имеет двенадцать пинт вина и хочет подарить из него половину, но у него нет сосуда в шесть пинт. У него два сосуда, один в 8, другой в 5 пинт; спрашивается: каким образом налить шесть пинт в сосуд в восемь пинт».

Быть может в школе учится будущий выдающийся математик и предложит свое решение.

Таким образом, видно насколько долог и тернист был путь многих задач прежде, чем они дошли до наших дней. И насколько кропотлив и трудоемок был труд тех людей, тех ученых, которые искали новые более рациональные решения этим задачам, которые несомненно активизируют деятельность детей в процессе решения задач.

Из выше приведенных примеров задач историко-математического характера можно сделать вывод, что исторические задачи сейчас используются как логические задачи. В свою же очередь задачи с историческим содержанием делятся на типовые стандартные и нестандартные, которые можно применять на уроках при изучении различных тем, касающихся величин, математических понятий и способов арифметических действий.


Глава 2. Методические аспекты использования исторического материала на уроках математики в начальной школе

 


Информация о работе «Исторический материал, как одно из средств развития познавательной активности младших школьников на уроке математике»
Раздел: Педагогика
Количество знаков с пробелами: 59835
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
108959
12
10

... росту. Существует определенная взаимосвязь проблем воспитания познавательного интереса и развития мышления в процессе обучения математике. Глава II Развитие познавательного интереса к урокам математики младших школьников средствами использования занимательных дидактических игр 2.1 Дидактические игры, их виды В отличие от других видов деятельности игра содержит цель в самой себе; ...

Скачать
63156
2
0

... . Попробуем это сделать, привлекая на помощь сведения из истории развития образовательно-воспитательных систем и современные приметы использования игры в учебной и воспитательной работе. 1.2. Дидактическая игра, как средство активизации познавательной деятельности младших школьников. В отличие от других видов деятельности игра содержит цель в самой себе; посторонних и отделенных задач в игре ...

Скачать
136817
12
0

... функционируют взаимосвязано, то воздействие на память, внимание и мышление, будет отражаться на познавательной активности младшего школьника.Глава 2. Учреждение дополнительного образования как субъект современного образования. § 1. О становлении и развитии системы дополнительного образования. В 1918 г. в Москве, в Сокольниках, открылось первое государственное внешкольное детское учреждение – ...

Скачать
115511
21
2

... позволяют организовать общение учащихся на более высоком уровне, вызывать у них потребность в обмене информацией, оказании помощи товарищу. Глава 2. Роль уроков информатики в развитии познавательной активности младших школьников В данной главе рассматриваются условия, способы и приемы, способствующие развитию познавательной активности младших школьников на уроках информатики, выделяются ...

0 комментариев


Наверх