Опис лабораторної установки

Автомобілі з гібридною трансміссією і комбінованою енергетичною установкою
АНАЛІЗ ПОКРАЩЕННЯ ПАЛИВНО-ЕКОНОМІЧНИХ Й ЕКОЛОГІЧНИХ ПОКАЗНИКІВ АВТОТРАНСПОРТНИХ ЗАСОБІВ Перспективні шляхи покращення паливної економічності й екологічних показників автомобілів Послідовна схема Висновки, постановка мети і задач роботи Короткий опис і характеристика основних складових автомобіля з КЕУ Генератор Дослідження, що характеризують роботу підвищувального конвертера Ділянки їздового циклу, що характеризують роботу конвертера Робочі характеристики підсистем і дослідження їх ефективності Вимірювання зворотної ЕРС Випробування генератора Вимірювання втрат потужності в гібридній системі приводу Випробування системи гібридного приводу за ефективністю основних елементів Випробування системи електродвигун-інвертор і карти їх ефективності Опис лабораторної установки Основні результати і висновки
116041
знак
33
таблицы
61
изображение

4.2 Опис лабораторної установки

Лабораторна установка розроблена для використання частоти 60 Гц при живленні електродвигуна не використовуючи інвертор. Це дасть гарну синусоїдальну форму хвилі для живлення електродвигуна, не беручи до уваги вплив інвертора при його роботі. Результат перегріву, отриманий від синусоїдальної форми хвилі був би найкращим для дослідження. Оскільки частота джерела живлення рівна 60 Гц, то частота досліджуваного 8-ми полюсного електродвигуна рівна 900 об/хв..

Оцінка електродвигуна Пріус при обертанні його ротора з частотою 1200 об/хв. може бути підрахована при апроксимації результатів отриманих під час дослідження ротора, що обертався з частотою 900 об/хв., що не викличе великої помилки. На рисунку 4.2 зображена схема лабораторної установки. Електродвигун, що досліджується, зображений у вершині схеми. Його вал з'єднаний з динамометром через вказувач крутного моменту. Інший кінець динамометричного вала з'єднаний з ротором двигуна з регульованою частотою обертання, що може утримувати частоту обертання ротора електродвигуна Пріус на позначці 900 об/хв. при частоті джерела живлення 60 Гц.

Рисунок 4.2 – Схема лабораторної установки, для дослідження теплових характеристик КЕУ

Із схеми видно, що струм трифазної мережі проходить через трансформатор, який понижує напругу із 480В до 120В. Трифазний перемикач синхронізації й три лампочки використовуються, щоб під'єднати електродвигун до мережі. Перемикач синхронізації включений, коли всі три лампочки темні. Система охолодження з’єднана з регулятором температури і регулятором швидкості циркуляції водно-етилен гліколевої рідини в системі охолодження.

На рисунку 4.3 показано з’єднання валів у лабораторній установці: електродвигуна, що підтримує необхідну частоту обертів електродвигуна Пріус, динамометра, вимірювача крутного моменту і електродвигуна Пріус.

Рисунок 4.3 – З’єднання валів у лабораторній установці

Вид збоку з’днання валів у лабораторній установці зображено на рис 4.4.

На рисунку 4.5 показано регулювання температури й регулювання витрати водно-етилен гліколевої рідини, що використовується для випробувань підвищення температури. Термопари розміщені на вході і виході рідини теплообмінника, що приєднаний до електродвигуна.


Рисунок 4.4 – Вид збоку з’єднання валів у лабораторній установці

Рисунок 4.5 – Регулювання температури й витрати водно-етиленових гліколей

4.3 Опис джерела для живлення навантажувального електродвигуна

Щоб вивчати перегрів електродвигуна і зв'язані із ним теплові проблеми керування теплом, використовується електроживлення частотою 60 Гц, що забезпечує синусоїдальну форму хвилі, при відокремленні впливу інвертора на електродвигун. На рисунку 4.6 зображено трифазний регульований трансформатор, що перетворює напругу з 480В на 120В, ряд ламп синхронізації, і перемикач синхронізації, що з’єднує електродвигун Пріус з електромережею 60 Гц.

Рисунок 4.6 – Система електроживлення частотою 60 Гц для випробування електродвигуна на перегрівання

Рисунок 4.7 – Облаштування приміщення керування

На рисунку 4.7 показано набір установок в приміщенні керування. Вікно безпеки відокремлює приміщення перевірки й приміщення керування. Контрольно-вимірювальний пристрій даних з’єднаний із пристроєм одержання й нагромадження даних для того, щоб читати струм, напругу, температуру, електрорушійну силу, витрату, крутний момент і час. Ватметр забезпечує вимірювання електричних даних, регулятор крутного моменту встановлює навантаження для підтримання необхідної частоти, контрольно-вимірювальний пристрій навантажувального кута вказує електричний кут між напругою на затискачах і зворотною ЕРС, і регулювання напруги здійснюється трансформатором, що розташований в приміщенні керування.

4.4 Теплові дослідження КЕУ

 

Механічні втрати при випробуванні

Електродвигун системи гібридного приводу обертав допоміжний двигун з частотою 900 об/хв. в режимі марного ходу. При цьому були визначені механічні втрати при чотирьох температурах охолоджуючої рідини: 35, 50, 75 і 105ºC. Таблиця 4.1 підсумовує дані механічних втрат.

Таблиця 4.1 – Результати механічних втрат

Тем-ра охол. рідини на вході Частота обертання ротора, об/хв. Частота обертання ротора, рад/с. Крутний момент, Н∙м Механічні втрати, Вт
35 900 94,25 1,7 160,2
50 900 94,25 1,7 160,2
75 900 94,25 1,7 160,2
105 900 94,25 1,6 150,8

Електродвигун Пріус був перевірений при частоті обертання ротора 900 об/хв., температурі охолоджуючої рідини 35 0С і напрузі на вході від 80 В до 210 В. Дані випробування при марному режимі роботи зведені в таблицю 4.2. Рисунки 4.8 і 4.9 показують залежність струму і потужності, відповідно, від напруги в режимі марного ходу.

Механічні й електричні втрати без використання навантаження використовуються, щоб встановити місця розташування втрат, для кращого аналізу температурних змін.

Перевірки були виконані, щоб визначити оптимальну напругу, яку необхідно підводити при даному крутному моменті до електродвигуна, якого пускають без навантаження. Крутний момент збільшували з кроком 10 Н∙м, а напругу – 5 В. Оптимальна напруга була визначена при найвищому ККД.

Випробування було виконано при кожній із чотирьох температур охолоджуючої рідини. Температура обмоток не перевищувала 170ºC , а оливи в системі мащення 158ºC, протягом випробувань. Таблиці 4.3, 4.4, і 4.5 підсумовують роботу електродвигуна при 35, 50 і 75ºC.

Таблиця 4.2 – Дані, отримані під час випробувань без навантаження

Напруга живлення, В Крутний момент, Н∙м Частота обертання ротора, об/хв. Частота обертання ротора, рад/с. Механічна потужність, Вт Електрична потужність, Вт Струм, А

Температура обмотки, 0С

Температура оливи, 0С

80 0 900 94,2 0 210 1,9 33,7 33,1
85 0 900 94,2 0 220 3,8 33,7 33,2
90 0 900 94,2 0 230 7,7 33,7 33,2
95 0 900 94,2 0 240 11 33,8 33,3
100 0 900 94,2 0 270 14,6 34 33,4
105 0 900 94,2 0 280 18,3 34,4 33,5
110 0 900 94,2 0 320 21,7 34,9 33,7
115 0 900 94,2 0 360 24,9 35,4 33,9
120 0 900 94,2 0 400 27,5 36,1 34,1
125 0 900 94,2 0 440 30,1 37 34,5
130 0 900 94,2 0 480 31,4 37,9 34,9
135 0 900 94,2 0 500 34,3 39,1 35,2
140 0 900 94,2 0 530 37 40,5 35,7
145 0 900 94,2 0 580 39 41,7 36,1
150 0 900 94,2 0 640 41,6 43,2 36,7
155 0 900 94,2 0 700 44,8 44,7 37,2
160 0 900 94,2 0 780 48,7 46,3 37,8
165 0 900 94,2 0 870 52,5 48,3 38,5
170 0 900 94,2 0 930 54,5 50,5 39,5
175 0 900 94,2 0 1,170 63,3 54,5 40,7
180 0 900 94,2 0 1,310 67,3 59,1 42,3
185 0 900 94,2 0 1,670 77,5 65,1 44,6
190 0 900 94,2 0 1,900 82,4 79,5 50
195 0 900 94,2 0 2,250 89,8 85,7 53,1
200 0 900 94,2 0 2,960 103,8 100,7 59,4
205 0 900 94,2 0 4,040 119,6 119,5 65,8

Рисунок 4.8 – Залежність струму від напруги при 900 об/хв. в марному режимі

Рисунок 4.9 – Залежність потужності від напруги при 900 об/хв. в марному режимі


Таблиця 4.3 – Залежність крутного моменту від напруги при температурі охолоджувальної рідини 35 0С

Напруга живлен-ня, В Крутний момент, Н∙м Частота обертан-ня ротора, об/хв. Частота обертан-ня ротора, рад/с. Механічна потуж-ність, Вт Електрик-на потуж-ність, Вт ККД Струм, А Коеф. потуж-ності

Тем-ра обмотки, 0С

Тем-ра оливи, 0С

85 0 900 94,25 0 130 3,5 29,6 27,8
Напруга живлен-ня, В Крутний момент, Н∙м Частота обертан-ня ротора, об/хв. Частота обертан-ня ротора, рад/с. Механічна потуж-ність, Вт Електрик-на потуж-ність, Вт ККД Струм, А Коеф. потуж-ності

Тем-ра обмотки, 0С

Тем-ра оливи, 0С

85 10 900 94,25 942 1,030 0,92 7,3 0,96 35,3 34,1
90 20 900 94,25 1,885 2,030 0,93 13,3 0,98 37 35,1
100 30 900 94,25 2,827 3,000 0,94 18,8 0,92 39,5 36,9
105 40 900 94,25 3,770 4,020 0,94 23,9 0,93 41,7 38
115 50 900 94,25 4,712 5,030 0,94 28,5 0,89 45,9 41,6
120 60 900 94,25 5,655 6,070 0,93 33 0,89 48,7 43,1
130 70 900 94,25 6,597 7,070 0,93 37,3 0,84 56,2 49,7
130 80 900 94,25 7,540 8,090 0,93 41,6 0,86 61,2 52,5
135 90 900 94,25 8,482 9,130 0,93 45,7 0,86 68,0 58
140 100 900 94,25 9,425 10,190 0,92 50,1 0,84 73,9 60,8
150 110 900 94,25 10,367 11,260 0,92 54,5 0,80 83,2 68,2
150 120 900 94,25 11,310 12,310 0,92 58,7 0,81 92,7 75,1
150 130 900 94,25 12,252 13,440 0,91 63,2 0,82 101,8 80,4
155 140 900 94,25 13,195 14,560 0,91 67,6 0,80 109,7 84,4
160 150 900 94,25 14,137 15,710 0,90 72,3 0,79 120,8 91,2
165 160 900 94,25 15,080 16,910 0,89 77,1 0,77 136,8 101,2
165 170 900 94,25 16,022 18,180 0,88 82,4 0,77 159,2 115,5

Таблиця 4.4 – Залежність крутного моменту від напруги при температурі охолоджувальної рідини 50 0С

Напруга живлення, В Крутний момент, Н∙м Частота обертання ротора, об/хв. Частота обертання ротора, рад/с. Механічна потуж-ність, Вт Електрик-на потуж-ність, Вт ККД Струм, А Коеф. потуж-ності

Тем-ра обмотки, 0С

Тем-ра оливи, 0С

80 0 900 94,25 0 140 1,5 51 50,5
85 10 900 94,25 942 1,090 0,86 7,8 0,95 51,8 51,2
90 20 900 94,25 1,885 2,060 0,92 13,9 0,95 54,2 53
100 30 900 94,25 2,827 3,070 0,92 19,4 0,91 57,2 55,3
105 40 900 94,25 3,770 4,070 0,93 24,3 0,92 60,7 57,7
115 50 900 94,25 4,712 5,070 0,93 29,0 0,88 64,8 60,3
120 60 900 94,25 5,655 6,090 0,93 33,4 0,88 68,6 62,5
130 70 900 94,25 6,597 7,110 0,93 37,5 0,84 71,1 63
130 80 900 94,25 7,540 8,140 0,93 42,3 0,86 79,4 69,8
135 90 900 94,25 8,482 9,190 0,92 46,4 0,85 85,5 73,7
140 100 900 94,25 9,425 10,220 0,92 50,6 0,83 90,2 75,4
140 100 900 94,25 9,425 10,220 0,92 50,6 0,83 90,2 75,4
150 110 900 94,25 10,367 11,310 0,92 55,1 0,79 104 86,3
150 120 900 94,25 11,310 12,400 0,91 59,3 0,81 111,7 90,4
150 130 900 94,25 12,252 13,500 0,91 63,8 0,82 119,9 94,5
Напруга живлення, В Крутний момент, Н∙м Частота обертання ротора, об/хв. Частота обертання ротора, рад/с. Механічна потуж-ність, Вт Електрик-на потуж-ність, Вт ККД Струм, А Коеф. потуж-ності

Тем-ра обмотки, 0С

Тем-ра оливи, 0С

155 140 900 94,25 13,195 14,720 0,90 68,1 0,81 135 103,6
160 150 900 94,25 14,137 15,800 0,89 72,9 0,78 144,1 107,7
165 160 900 94,25 15,080 17,040 0,88 78,0 0,77 160,7 120,3

Таблиця 4.5 – Залежність крутного моменту від напруги при температурі охолоджувальної рідини 75 0С

Напруга живлення, В Крутний момент, Н∙м Частота обертання ротора, об/хв. Частота обертання ротора, рад/с. Механічна потуж-ність, Вт Електрик-на потуж-ність, Вт ККД Струм, А Коеф. потуж-ності

Тем-ра обмотки, 0С

Тем-ра оливи, 0С

85 0 900 94,25 0 130 1,2 59,8 57,3
85 10 900 94,25 942 1,060 0,89 7,9 0,91 66 63,2
90 20 900 94,25 1,885 2,050 0,92 14 0,94 68,5 65,3
100 30 900 94,25 2,827 3,040 0,93 19,4 0,91 71,8 67,7
105 40 900 94,25 3,770 4,040 0,93 24,5 0,91 76 70,8
115 50 900 94,25 4,712 5,050 0,93 29 0,88 79,9 73,3
120 60 900 94,25 5,655 6,060 0,93 33,6 0,87 84,7 76,4
130 70 900 94,25 6,597 7,090 0,93 37,9 0,83 89,6 79,3
130 80 900 94,25 7,540 8,130 0,93 42,5 0,85 96,3 84,1
135 90 900 94,25 8,482 9,180 0,92 46,5 0,85 103,60 89
140 100 900 94,25 9,425 10,230 0,92 50,8 0,83 110,6 93,4
150 110 900 94,25 10,367 11,330 0,92 55,5 0,79 118,8 97,8
150 120 900 94,25 11,310 12,430 0,91 60 0,80 131,9 106,6
150 130 900 94,25 12,252 13,560 0,90 64,5 0,81 140,7 111,6
155 140 900 94,25 13,195 14,770 0,89 69,1 0,80 145,9 114,1

Випробування були виконані, щоб вирішити, що можливість безперервної роботи електродвигуна, при чотирьох температурах охолоджуючої рідини на вході, забезпечується, оскільки теплові параметри машини є нижчі ніж температура обмотки статора і оливи в системі змащення. Таблиці 4.6 і 4.7 підсумовують параметри електродвигуна. Точка входу охолоджуючої рідини розміщена із сторони генератора і точка виходу – із сторони електродвигуна. Із генератора до тягового електродвигуна охолоджуюча рідина протікає через шланги. Результати вимірювань механічних втрат, втрат від опору обмотки і основних втрат для чотирьох температур охолоджуючої рідини зведені в таблиці 4.8.

Таблиця 4.6 – Можливі потужності при 900 об/хв і роботі зі стійкими параметрами

Напруга жив-лення, В

Крут-

ний момент, Н∙м

Час-

тота обертан-ня ротора, об/хв.

Час-

тота обертан-ня ротора, рад/с.

Меха-

нічна потуж-ність

Вт

Ефект-рик-на потуж-ність, Вт ККД Струм, А Коеф. потуж-ності

Тем-ра обмотки, 0С

Тем-ра

оливи,

0С

Тем-ра

ох. рі-ни,

0С

Тривалість випробування, хв
160 167,3 900 94,2 15,768 17970 0,88 81,6 0,80 166 114,3 34,6 99,1
165 159,6 900 94,2 15,042 17090 0,88 78 0,77 167,2 118,5 49,5 48,2
160 145,7 900 94,2 13,732 15510 0,89 72 0,78 168,5 118,5 73,9 66,8
150 117,8 900 94,2 11,102 12380 0,90 60,5 0,79 166,3 130,3 103,4 80,3

Таблиця 4.7 – Оцінки безперервного потоку потужності

Тем-ра ох. рі-ни, 0С

Крутний момент, Н∙м Значення потужності при 900 об/хв. Значення потужності при 1200 об/хв.
35 167,3 16 21
50 159,6 15 20
74 145,7 14 18
103 117,8 11 15

Таблиця 4.8 – Можливі потужності при 900 обертах у хвилину, включаючи теплові дані

Тем-ра ох. рі-ни, 0С

Напруга

жив-

лення,

 В

Крут-

ний

момент,

ъ Н∙м

Тем-ра

 охол.

 Рідини

 на

вході,

0С

Тем-ра охол. рідини всередині, 0С

Тем-ра охол. рідини на виході, 0С

Потік,

галон/хв.

Тривалість випробування, хв

Поч.,

0С

Кін, 0С

Поч. , 0С

Кін, 0С

35 160 167,3 34,6 36,0 37,6 2,4 90,1 166 67,8 114,3 88,6
50 165 159,6 49,5 50,3 51,8 2,4 163,1 167,2 114,2 118,5 48,2
75 160 145,7 73,9 74,1 75,1 2,4 159,1 168,4 118,3 125,3 66,8
105 150 117,8 103,5 102,6 102,9 2,4 149 166,3 117,3 130,3 80,3

Результати оцінки безперервної роботи електродвигуна при частоті обертання ротора 900 об/хв. і чотирьох різних температурах охолоджувальної рідини можуть бути обчисленні для частоти 1200 об/хв. при використанні даних крутного моменту і швидкості, наведених в таблиці 4.6. Результати розрахунку наведені нижче в таблиці 4.7. Відповідні розрахунки потужності при 1200 об/хв. розроблені при апроксимації даних досліджень 900 об/хв. і використанні множника відношення швидкостей (тобто 1200/900=1,333).

Таблиця 4.9 показує можливі потужності при частоті ротора 900 об/хв., включаючи теплові дані при різних температурах охолоджуючої рідини. Таблиця 4.9 також дає дані втрат потужності при різних температурах охолоджуючої рідини.


Таблиця 4.9 – Результати сумарних втрат

Тем-ра ох. рі-ни, 0С

Напруга жив-лення, В Крут-ний момент, Н∙м Мех. потуж-ність, Вт Електр. потуж-ність, Вт Сумарні втрати, Вт Мех. втрати, Вт

Втрати в обм. (І2R), Вт

Осн. втрати, Вт ККД Струм наван-таження, А Коеф. Потуж-ності
35 160 167,3 15,768 17,970 2,202 160 1,019 1,023 0,88 81,6 0,80
50 165 159,6 15,042 17,090 2,048 160 935 952 0,88 78 0,77
75 160 145,7 13,732 15,510 1,778 160 801 817 0,89 72 0,78
105 150 117,8 11,102 12,380 1,278 151 560 567 0,90 60,5 0,79

Рисунки 4.10-4.17 показують залежність температури в давачах від часу випробувань для різних температур охолоджуючої рідини відповідно. Для безперервної роботи електродвигуна необхідно, щоб температура статора не перевищувала гранично допустимої (170 0С), а температура оливи в системі мащення не перевищувала 158 0С.

Рисунок 4.10 – Зміна температури в точках електродвигуна при частоті ротора 900 об/хв., крутному моменті 168,7 Н∙м і температурі охолоджувальної рідини 35 0С


Рисунок 4.11 – Зміна температури в точках електродвигуна при частоті ротора 900 об/хв., крутному моменті 168,7 Н∙м і температурі охолоджувальної рідини 35 0С

Рисунок 4.12 – Зміна температури в точках електродвигуна при частоті ротора 900об/хв., крутному моменті 159,6 Н∙м і температурі охолоджувальної рідини 50 0С


Рисунок 4.13 – Зміна температури в точках електродвигуна при частоті ротора 900об/хв, крутному моменті 159,6 Н∙м і температурі охолоджувальної рідини 50 0С

Рисунок 4.14 – Зміна температури в точках електродвигуна при частоті ротора 900об/хв., крутному моменті 145,7 Н∙м і температурі охолоджувальної рідини 75 0С


Рисунок 4.15 – Зміна температури в точках електродвигуна при частоті ротора 900об/хв, крутному моменті 145,7 Н∙м і температурі охолоджувальної рідини 75 0С

Рисунок 4.16 – Зміна температури в точках електродвигуна при частоті ротора 900об/хв, крутному моменті 117,8 Н∙м і температурі охолоджувальної рідини 105 0С


Рисунок 4.17 – Зміна температури в точках електродвигуна при частоті ротора 900об/хв, крутному моменті 117,8 Н∙м і температурі охолоджувальної рідини 105 0С

Таблиця 4.10 – Розосереджена моторна потужність до моторного теплообмінника

Тем-ра ох. рі-ни, 0С

Тем-ра на виході, 0F

Тем-ра на вході, 0F

Різниця, 0F

Витрата, галон/хв. Витрата, л/хв. Потужність теплообмін-ника, кВт
35 99,68 94,28 5,4 0,1514 2,2 1,678
50 125,24 121,1 4,14 0,1514 2,2 1,287
75 167,18 165,02 2,16 0,1514 2,2 0,677
105 217,22 218,3 -1,08 0,1514 2,2 -0,338

Таблиця 4.11 показує ефективність теплообмінника електродвигуна, що визначене відношенням розосередженої потужності електродвигуна до потужності теплообмінника і сумарних втрат в електродвигуні. Коли температура охолоджуючої рідини низька і рівна 350С то це відношення рівне 0,763. Це відношення зменшується, коли температура охолоджуючої рідини зростає. Як видно, при 1050С теплообмінник не тільки припиняє охолоджувати електродвигун, а й передає йому свою теплоту, використовуючи при цьому електродвигун як радіатор.


Таблиця 4.11 – Ефективність роботи теплообмінника електродвигуна

Тем-ра ох. рі-ни, 0С

Сумарні втрати, кВт Потужність тепло-обмінника, кВт ККД теплообмінника
35 2,200 1,678 0,763
50 2,050 1,287 0,628
75 1,780 0,677 0,380
105 1,280 -0,338 -0,264

Таблиця 4.12 показує оцінку максимальної потужності за дослідними даними. Залежність температури від часу при різних крутних моментах і механічних навантаженнях зображено на рисунку 4.18.

Таблиця 4.12 – Дослідження при максимальній потужності

Струм, А Напруга, В Крутний момент, Н·м Мех. потужність, В Час випробувань, с
136 205 265 24,976 91
149 205 300 28,275 40
161 205 320 30,160 62
176 205 335 31,574 30
187 205 344 32,422 30
176 210 338 31,857 40
136 205 265 24,976 91

Рисунок 4.18 – Випробування максимальної потужності при частоті ротора 900 об/хв і напрузі 205 В


Рисунок 4.19 показує залежність швидкості зміни температури від крутного моменту. Спроектована точка – це точка із координатами 400 Н∙м і 2,1 0С/с. Якщо температура електродвигуна 40 0С , то для досягнення критичної температури необхідно 62 с((170-40)/2,1). Якщо обмотка електродвигуна гаряча і її температура 160 0С, то для виконання тієї ж операції необхідно 4,8 с при максимальному навантаженні ((170-160)/2,1).

ККД і коефіцієнти потужності електродвигуна при максимальному крутному моменті наведено в таблиці 4.19. ККД може бути в межах 40-50%, коли навантаження крутного моменту зростає. Коефіцієнт потужності майже еквівалентний активному навантаженню через високі втрати.

Рисунок 4.19. Швидкість зміни температури обмотки при крутному моменті 400 Н∙м

Таблиця 4.13 – ККД і потужності в області максимального крутного моменту

Темп. обмотки, 0С

Крутний момент, Н·м Струм, А Напруга, В Мех. потужність, В Електр. потужність, В ККД
127,8 265,0 136,0 205,0 24976 48232 0,518 0,999
132,4 300,0 149,0 205,0 28275 52843 0,535 0,999
92,9 320,0 161,0 205,0 30160 57099 0,528 0,999
82,9 335,0 176,0 205,0 31574 62418 0,506 0,999
70,8 344,0 187,0 205,0 32422 66320 0,489 0,999


Информация о работе «Автомобілі з гібридною трансміссією і комбінованою енергетичною установкою»
Раздел: Транспорт
Количество знаков с пробелами: 116041
Количество таблиц: 33
Количество изображений: 61

Похожие работы

Скачать
34177
1
1

... рівень функціонування — неодмінні умови життя сучасного міста і його населення. Однак настільки ж очевидно, що саме діяльність міського транспорту, в тому числі пасажирського, може бути визнана одним з основних факторів негативного впливу на стан середовища існування в містах, особливо великих. Необхідна комплексна оцінка функціонування міських транспортних систем, їхньої екологічної чистоти, ...

0 комментариев


Наверх