1.3 Термодинамическое моделирование свойств твердых металлических растворов. Обобщенная теория «регулярных» растворов

 

Твёрдые растворы - однородные (гомогенные) кристаллические фазы переменного состава; образуются в двойных или многокомпонентных системах. Если компоненты системы неограниченно растворимы друг в друге, они образуют непрерывный ряд твёрдых растворов. Чаще, однако, концентрация растворенного вещества не может превышать некоторое предельное значение и существование твёрдого раствора ограничено некоторыми областями составов (области гомогенности). Твёрдыми растворами являются многие металлические сплавы и неметаллические системы - минералы, стекла, полупроводники, ферриты [3].

Регулярный раствор образуется из компонентов с выделением или поглощением тепла, а энтропия смешения его такая же, как и в совершенном растворе. Проблема аналитического представления концентрационной и температурной зависимости термодинамических свойств сводится к поиску соответствующего выражения для избыточной энергии Гиббса GE.Обычно в качестве нулевого приближения к теории реальных растворов применяется модель идеального раствора, где GE=0. В настоящей модели за нулевое приближение принята теория регулярных растворов.

Понятие «регулярный раствор» включает в себя как частные случаи понятия «идеальный» и «предельно разбавленный» раствор, а закон граничной регулярности, согласно которому любой раствор можно считать регулярным до определенного предела, справедлив для более широкого диапазона концентраций, чем законы Рауля и Генри.

Для регулярного раствора:

, (1.1)

где xi и xj – мольные доли компонентов,

Qij - энергия взаимообмена (смешения).

В рамках модели строго регулярного раствора энергии взаимообмена являются константами. В реальных системах энергии взаимообмена (как эмпирические параметры модели) зависят от состава и температуры.

Для субрегулярных растворов:

; (1.2)

Для квазирегулярных растворов:

; (1.3)


где:  и  - соответственно теплота и избыточная энтропия смешения компонентов. Выражения (1.2) и (1.3), очевидно, можно рассматривать как частные случаи неизвестной функции для концентрационной и температурной зависимостей энергии смешения компонентов, получаемой путем разложения  и  в ряд Тейлора. Если ограничиться несколькими первыми членами ряда:

; (1.4)

то получится представление функции  полиномом. В свою очередь, каждый из параметров , , ,…,  может зависеть от температуры:

; (1.5)

Многочлены (1.4) и (1.5) - приближенное выражение неизвестной функции . Качество приближения определяется величиной остатка рядов – той ее части, которая отбрасывается. Чтобы наше приближение удовлетворительно описывало термодинамические свойства раствора, нужно, чтобы остаток был невелик по сравнению с ошибкой экспериментов. Тогда дальнейшее уточнение функции теряет смысл.

Как показывает математическая обработка экспериментальных данных, для бинарных растворов достаточно трех параметров , , , чтобы в большинстве случаев корректно аппроксимировать термодинамические функции смешения системы.

Поэтому концентрационную (конфигурационную) энергию взаимообмена компонентов в дальнейшем будем представлять тремя членами ряда (1.4), а избыточную энергию Гиббса любой фазы с областью гомогенности будем описывать уравнением:

; (1.6)

где  и  - термодинамические характеристики областей регулярности двойной системы вблизи чистых компонентов;

 - параметр, учитывающий отклонение от «регулярности».

Умножив части уравнения (1.6) на общее число молей  компонентов в растворе, получим избыточную энергию Гиббса  произвольного количества фазы. Откуда:

 (1.7)

Активности компонентов двойной системы:

; (1.8)

; (1.9)


Обобщенная теория «регулярных» растворов позволяет успешно описать термодинамические свойства металлических, неметаллических и смешанных систем [4].


Информация о работе «Термодинамика химической устойчивости сплавов системы Mn-Si»
Раздел: Химия
Количество знаков с пробелами: 45983
Количество таблиц: 12
Количество изображений: 7

Похожие работы

Скачать
40258
13
12

... устойчивость металлов и сплавов определяется их стойкостью к коррозии в водной среде. Лучшим способом представления термодинамической информации о химической и электрохимической устойчивости металлических систем в водных растворах являются диаграммы рН-потенциал. Впервые такие диаграммы в системе элемент-вода для чистых металлов при температуре 250С были построены Марселем Пурбе и использованы им ...

Скачать
56351
25
13

... VIII – CuO + NiO2 + {O2}. Области I и V очень малы и в масштабе диаграммы вырождаются в линии. Анализируя диаграмму Cu – Ni – O можно сделать следующие выводы о химической устойчивости медно-никелевых сплавов: 1) Окисление сплавов начинается уже при давлениях кислорода в газовой фазе над сплавами большем чем  атм. Поэтому медно-никелевые сплавы будут окисляться кислородом воздуха при 25оС. 2) ...

Скачать
136540
1
2

... пособие по прикладной химии «Задачи по теоретическим основам химической технологии», составленное по материалам представленной работы.   3. Методика решения задач по теоретическим основам химической технологии Одна из главных задач химической науки и промышленности - получение необходимых человеку веществ (продуктов, материалов). Поэтому большинство учебных химических задач снизано с ...

Скачать
14311
1
1

абсолютно чистые минералы, расплавленные и сублимированные горные породы. Гетерогенной это такая термодинамическая система, которая состоит из двух и более гомогенных областей. Внутри такой системы имеются поверхности раздела фаз, при переходе через которые химический состав и физические свойства вещества изменяются скачкообразно. Фазой гетерогенной системы называется гомогенная область, которая ...

0 комментариев


Наверх