4. Оценка влияния погрешности гирокомпасов на точность судовождения.

 

4.1 Оценка возможной погрешности определения места судна по двум пеленгам.

 

Задание 2.1.(А)

 

A. Работа с гирокомпасом «Курс-4».

Расстояние между ориентирами L=(20+0.1·m)=20+0,1·14= 21.4 (мили);

Азимут ориентиров А12=(10·n+m)=10·13+14= 144˚;

ГКП1=A12+130-n=144+130-13=269˚;

ГКП2=A12+50+n=144+50+13=207˚.

В качестве момента времени tоб, по заданию, выбираем время 1-го экстремума кривой суммарной инерционной погрешности. tоб = te1=2610 c, δj(tоб) = -0,1˚. (Из задания 1.А.)

 Порядок выполнения следующий:

В произвольном масштабе наносим ориентир O1 и строим относительно него ориентир O2(по азимуту A12 и расстоянию L).

Прокладываем на плане линии компасных пеленгов ориентиров ГКП1 и ГКП2 , пересечение которых дает точкуM1.

Используя график суммарной инерционной погрешности, полученной в задании, на момент времени tоб находим величины суммарной инерционной погрешности.

Так,

 tоб = te1=2610 c, δj(tоб)= -0,1˚

Рассчитываем значения истинных пеленгов ориентиров ИП1 и ИП2, исправляя значения ГКП1 и ГКП2 поправкой δj(tоб) по формуле:

ИП1= ГКП1 + δj(tоб) = 261˚ -0,1˚= 260,9˚

ИП2= ГКП2 + δj(tоб) = 207˚ -0,1˚= 206,9˚

На плане прокладываем истинные пеленга ИП1 и ИП2 и, таким образом, получаем истинное место суднаM2.

Оцениваем погрешность, допущенную в данном определении места судна, выражаемую в линейных единицах (милях) расстоянием r между точками M1 и M2.

Полученное значение r= миль.

Графическое решение задачи А предоставлено на рис. 1.3

Б. Работа с гирокомпасом «Вега».

Порядок выполнения аналогичен указанному в пункте (А), за исключением того, что значение суммарной инерционной погрешности определяется по кривой суммарной инерционной погрешности для гирокомпаса «Вега», полученной в задании 1.(Б).

Так, tоб = te1=180 c, δj(tоб)= 4.3˚

Графическое решение задачи осуществляется по образцу рисунка 3 Рассчитываем значения истинных пеленгов ориентиров ИП1 и ИП2, исправляя значения ГКП1 и ГКП2 поправкой δj(tоб) по формуле:

ИП1= ГКП1 + δj(tоб) = 261˚ +4.3˚= 265.3˚

ИП2= ГКП2 + δj(tоб) = 207˚ +4.3˚= 211.3˚

Погрешность, допущенная при определении места судна, аналогично определяется ) расстоянием r между точками M1 и M2.

Полученное значение r= миль.

Графическое решение задачи Б предоставлено на рис. 1.4

4.2 Оценка погрешностей определения поправки гирокомпаса

Задание 2.2.(А)

Произвести оценку погрешности определения поправки гирокомпаса по створу после маневра судна.

A. Определение поправки гирокомпаса «Курс-4».

Исходные данные:

V’1=V1+5= 23+5=28 уз.;

V’2=V2-5= 24+5=19 уз.;

ГКК’1=180˚+(-1)n·m=180-14=166˚;

ГКК’2=360˚+(-1)m·n=360+13=373˚=13˚;

tΔГК = 0 сек.

ΔVN= -23.6 м-1

Порядок выполнения такой:

Используя кривую суммарной инерционной погрешности δj для гирокомпаса «Курс-4», полученную в задании 1.(A), выбираем значение суммарной инерционной погрешности на момент времени tΔГК= 0, δj=0. Рассчитываем значение изменения северной составляющей скорости судна:

ΔV’N=V’2·cosГКК’2-V’cosГКК’1=19·0.99-28·0.99=18.81-27.72= -8.91 (м-1)

Определяем фактическую величину погрешности δ j(tΔГК)ф , учитывая изменившееся значение ΔV’N по отношению к ΔVN для задания 1.(A), пересчет производится по формуле:

δ j(tΔГК)ф= δ j(tΔГК)·(ΔV’N/ΔVN),

δ j(tΔГК)ф=2.9·(-8.91/-23.6)=1˚

Величина погрешности εΔГК, допущенной при определении величины поправки гирокомпаса в момент времени tΔГК определяется по формуле:

εΔГК= -δ j(tΔГК)ф= -1˚

Полученные данные представим в таблице 3.

Таблица 3

tΔГК,сек φ,˚ V’1,уз. V’2, уз. ГКК’1,˚ ГКК’2,˚ ΔV’N, м/с-1 δ j(tΔГК)ф,˚ εΔГК,˚
0 50 28 19 166 13 -8.91 1 -1

Б. Определение поправки гирокомпаса «Вега».

Исходные данные такие же, как и в задании 1.(Б).

Порядок выполнения остается таким же, как и в предыдущем пункте, за исключением: значение δ j(tΔГК) выбирается по графику суммарной инерционной погрешности для гирокомпаса «Вега». Пункт 2 не выполняется, полагая δ j(tΔГК)= δ j(tΔГК)ф .

Таким образом, εΔГК= 0,1˚.


Информация о работе «Расчёт инерционной погрешности гирокомпасов»
Раздел: Промышленность, производство
Количество знаков с пробелами: 19098
Количество таблиц: 17
Количество изображений: 0

Похожие работы

Скачать
153394
23
22

... 6765$   2.9 Расчет рамки и сетки карты графического плана переход Результаты всей предыдущей работы по навигационному проектированию переоформляем в виде графического плана перехода на двух листах формата А-1. Первый из листов охватывает в мелком масштабе (1:2000000) весь переход (от порта Малага до порта Неаполь), а второй – крупномасштабный () сложный участок перехода. Для построения ...

Скачать
120335
12
5

... колебаний чувствительного элемента до 150 мин и использованием индикатора горизонта с нелинейной характеристикой. Точность показаний прибора в режиме гироазимута при скорости судна до 70 уз характеризуется дрейфом ±1,0 град/ч в широтах до 70° и ±1,5 град/ч в широтах от 70 до 80°. Рабочая температура поддерживающей жидкости гироазимуткомпаса «Вега» составляет 73°С, поэтому гирокомпас не ...

Скачать
128095
29
6

... карт с изолиниями системы LORAN-C, это облегчает судоводителю работу по обсервациям в Эгейском, Ионическом море, и также обеспечит определение места судна с требуемой точностью и периодичностью. 1.5 Сведения о портах ПОРТ ОДЕССА Порт Одесса - один из крупнейших портов Украины - оборудован в Одесском заливе, находящемся в северо-западной части Чёрного моря. К нему примыкает город Одесса - ...

Скачать
188502
9
2

... 5о. при перевозке ферромагнитных грузов допускается использование временной таблицы девиации. Гирокомпас готовят согласно Правилам технической эксплуатации и соответствующей инструкции. Запускают его заблаговременно, не позже, чем за 6 часов до отхода судна. Постоянная поправка гирокомпаса определяется: после длительной стоянки судна, смены гиросферы или поддерживающей жидкости в основном приборе ...

0 комментариев


Наверх