4. Теорема Бернуллі про частоту ймовірності

Теорема. Імовірність того, що в n незалежних випробуваннях, у кожному з яких імовірність появи події дорівнює p, абсолютна величина відхилення відносної частоти появи події від імовірності появи події не перевищить позитивного числа , приблизно дорівнює подвоєної функції Лапласа при :

.

Доказ. Будемо вважати, що виробляється n незалежних випробувань, у кожному з яких імовірність появи події А постійна й дорівнює p. Поставимо перед собою задачу знайти ймовірність того, що відхилення відносної частоти  від постійної ймовірності p по абсолютній величині не перевищує заданого числа . Інакше кажучи, знайдемо ймовірність здійснення нерівності

. (*)

Замінимо нерівність (*) йому рівносильними:

.

Множачи ці нерівності на позитивний множник , одержимо нерівності, рівносильні вихідному:

.


Тоді ймовірність знайдемо в такий спосіб:

.

Значення функції  перебуває по таблиці(див. додаток 2).

Приклади

№20. Імовірність того, що деталь не стандартна, p=0,1. Знайти ймовірність того, що серед випадково відібраних 400 деталей відносна частота появи нестандартних деталей відхилиться від імовірності p=0,1 по абсолютній величині не більш, ніж на 0,03.

Рішення. n=400; p=0,1; q=0,9; =0,03. Потрібно знайти ймовірність . Користуючись формулою

,

маємо

.

По таблиці додатка 2 знаходимо . Отже, . Отже, шукана ймовірність дорівнює 0,9544.

№21. Імовірність того, що деталь не стандартна, p=0,1. Знайти, скільки деталей треба відібрати, щоб з імовірністю, рівної 0,9544, можна було затверджувати, що відносна частота появи нестандартних деталей(серед відібраних) відхилиться від постійної ймовірності p по абсолютній величині не більше ніж на 0,03.

Рішення. За умовою, p=0,1; q=0,9; =0,03; . Потрібно знайти n. Скористаємося формулою

.

У силу умови

Отже,

По таблиці додатка 2 знаходимо . Для відшукання числа n одержуємо рівняння . Звідси шукане число деталей n=400.

№22. Імовірність появи події в кожному з незалежних випробувань дорівнює 0,2. Знайти, яке відхилення відносної частоти появи події від його ймовірності можна чекати з імовірністю 0,9128 при 5000 випробуваннях.

Рішення. Скористаємося тією же формулою, з якої треба:

.


Література

1. Гмурман Е.В. Теорія ймовірностей і математична статистика. – К., 2003

2. Гмурман Е.В. Керівництво до рішення задач по теорії ймовірностей і математичній статистиці. – К., 2004.

3. Гнеденко Б.В. Курс теорії ймовірностей. – К., 2007.

4. Колемаєв В.А., Калініна В.Н., Соловйов В.И., Малихин В.І., Курочкин О.П. Теорія ймовірностей у прикладах і задачах. – К., 2004.

5. Вентцель Е.С. Теорія ймовірностей. – К., 2004


Додатки

Додаток 1

Таблиця значень функції

0 1 2 3 4 5 6 7 8 9
1.6 1109 1092 1074 1057 1040 1023 1006 0989 0973 0957
1.7 0940 0925 0909 0893 0878 0863 0648 0833 0818 0804
1.8 0790 0775 0761 0748 0734 0721 0707 0694 0681 0669
1.9 0656 0644 0632 0620 0608 0596 0584 0573 0562 0551
2,0 0540 0529 0519 0508 0498 0488 0478 0468 0459 0449
2.1 0440 0431 0422 0413 0404 0396 0387 0379 0371 0363
2.2 0355 0347 0339 0332 0325 0317 0310 0303 0297 0290
2.3 0283 0277 0270 0264 0258 0252 0246 0241 0235 0229
2,4 0224 0219 0213 0208 0203 0198 0194 0189 0184 0180
2.5 0175 0171 0167 0163 0158 0154 0151 0147 0143 0139
2.6 0136 0132 0129 0126 0122 0119 0116 0113 0110 0107
2,7 0104 0101 0099 0096 0093 0091 0088 0086 0084 0081
2,8 0079 0077 0075 0073 0071 0069 0067 0065 0063 0061
2.9 0060 0058 0056 0055 0053 0051 0050 0048 0047 0043
3,0 0044 0043 0042 0040 0039 0038 0037 0036 0035 0034
3,1 0033 0032 0031 0030 0029 0028. 0027 0026 0025 0025
3,2 0024 0023 0622 0022 0021 0020 0020 0019 0018 0018
3,3 0017 0017 0016 0016 0015 0015 0014 0014 0013 0013
3,4 0012 0012 0012 0011 0011 0010 0010 0010 0009 0009
3,5 0009 0008 0008 0008 0008 0007 0007 0007 0007 0006
3,6 0006 0006 0006 0005 0005 0005 0005 0005 0005 0004
3,7 0004 0004 0004 0004 0004 0004 0003 0003 0003 0003
3,8 0003 0003 0003 0003 0003 0002 0002 0002 0002 0002
3,9 0002 0002 0002 0002 0002 0002 0002 0002 0001 0001

Додаток 2

Таблиця значень функції

x

x

x

x

0900 0,0000 0,32 0,1255 0,64 0,2389 0,96 0,3315
0,01 0,0040 0,33 0,1293 0,65 0,2422 0,97 0,3340
0,02 0,0080 0,34 0,1331 0,66 0,2454 0,98 0,3365
0,03 0,0120 0,35 0,1368 0,67 0,2486 0.99 0,3389
0,04 0,0160 0,36 0,1406 0,68 0,2517 1,00 0,3413
0,05 0,0199 0,37 0,1443 0,69 0,2549 1,01 0,3438
0,06 0,0239 0,38 0,1480 0,70 0,2580 1,02 0,3461
0,07 0,0279 0,39 0,1517 0,71 0,2611 1,03 0,3485
0,08 0,0319 0,40 0,1554 0,72 0,2642 1,04 0,3508
0,09 0,0359 0,41 0,1591 0,73 0,2673 1,05 0,3531
0,10 0,0398 0,42 0,1628 0,74 0,2703 1,06 0,3554
0,11 0,0438 0,43 0,1664 0,75 0,2734 1,07 0,3577
0,12 0,0478 0,44 0,1700 0,76 0,2764 1,08 0,3599
0,13 0,0517 0,45 0,1736 0,77 0,2794 1.09 0,3621
0,14 0,0557 0,46 0,1772 0,78 0,2823 1.10 0,3643
0,15 0,0596 0,47 0,1808 0,79 0,2852 3665 0,3665
0,16 0,0636 0,48 0,1844 0,80 0,2881 3686 0,3686
0,17 0,0675 0,49 01879 0,81 0,2910 1,13 0,3708.
0,18 0,0714 0,50 0,1915 0,82 0,2939 1,14 0,3729
0,19 0,0753 0,51 0,1950 0,83 0,2967 1,15 0,3749
0,20 0,0793 0,52 0,1985 0,84 0,2995 1,16 0,3770
0,21 0,0832 0,53 0,2019 0,85 0,3023 1,17 0,3790
0,22 0,0871 0,54 0,2054 0,86 0,3051 1,18 0,3810
0,23 0,0910 0,55 0,2088 0,87 0,3078 1,19 0,3830
0,24 0,0948 0,56 0,2123 0,88 0,3106 1,20 0,3849
0,25 0,0987 0,57 0,2157 0,89 0,3133 1.21 0,3869
0,26 0,1026 0,58 0,2190 0,90 0,3159 1,22 0/3883
0,27 0,1064 0,59 0,2224 0,91 0,3186 1,23 0,3907
0,28 0,1103 0,60 0,2257 0,92 0,3212 1.24 0,3925
0,29 0,1141 0,61 0,2291 0,93 0,3238 1,25 0,3944
0,30 0,1179 0,62 0,2324 0,94 0,3264
0,31 0,1217 0,63 0,2357 0,95 0,3289




x

x

  

x

x

1,26 0,3962 1,59 0,4441 1,92 0,4726 2,50 0,4938
1,27 0,3980 1,60 0,4452 1,93 0,4732 2,52 0,4941
1,28 0,3997 1,61 0,4463 1,94 0,4738 2,54 0,4945
1,29 0.4015 1,62 0,4474 1,95 0,4744 2,56 0,4948
1,30 0,4032 1,63 0.4484 1.96 0,4750 2,58 0,4951
1,31 0,4049 1,64 0,4495 1,97 0,4756 2,60 0,4953
1,32 0.4066 1,65 0,4505 1,98 0,4761 2,62 0,4956
1,33 0,4082 1,66 0,4515 1,99 0,4767 2,64 0,4959
1,34 0.4099 1,67 0.4525 2.00 0,4772 2,66 0,4961
1.3S 0.4115 1,68 0,4535 2,02 0,4783 2,68 0,4963
1,36 0.4131 1,69 0,4545 2,04 0,4793 2,70 0,4965
1,37 0.4147 1,70 0,4554 2,06 0,4803 2,72 0,4967
1,38 0.4162 1.71 0,4564 2,08 0,4812 2,74 0,4969
1,39 0.4177 1,72 0,4573 2,10 0,4821 2,76 0,4971
1.40 0,4192 1,73 0,4582 2,12 0,4830 2,78 0,4973
1.41 0,4207 1.74 0,4591 2,14 0,4838 2,80 0,4974
1.42 0.4222 1,75 0.4599 2,16 0,4846 2,82 0,4976
1.43 0.4236 1,76 0,4608 2,18 0,4854 2,84 0,4977
1.44 0,4251 1.77 0,4616 2,20 0,4861 2,86 0,4979
1,45 0.4265 1,78 0.4625 2,22 0,4868 2,88 0,4980
1.46 0,4279 1,79 0,4633 2,24 0,4875 2,90 0,4981
1.47 0,4292 1,80 0,4641 2,26 0,4881 2,92 0,4982
1,48 0,4306 1.81 0,4649 2,28 0,4887 2,94 0,4984
1,49 0.4319 1,82 0,4656 2,30 0,4893 2,96 0,4985
1.50 0,4332 1,83 0,4664 2,32 0,4898 2.98 0,4986
1,51 0,4345 1,84 0,4671 2,34 0,4904 3,00 0,49865
1.52 0,4357 1,85 0,4678 2,36 0,4909 3,20 0,49931
1.53 0,4370 1,86 0,4686 2,38 0,4913 3.40 0,49966
1.54 0,4382 1,87 0,4693 2,40 0,4918 3,60 0,49984
1,55 0,4394 1.88 0,4699 2,42 0,4922 3,80 0,49992
1.S6 0,4406 1.89 0,4706 2,44 0,4927 4,00 0,49996
1,57 0,4418 1,90 0,4713 2,46 0,4931 4,50 0,49999
1,58 0,4429 1,91 0,4719 2,48 0,4934 5,00 0,49999

Информация о работе «Незалежні випробування»
Раздел: Математика
Количество знаков с пробелами: 19402
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
54810
5
18

... . Поклавши у формулі (4) а = b = 1, дістанемо Нехай маємо скінченну множину, яка містить п елементів. Тоді кількість підмножин цієї множини дорівнює 2n. Наприклад, для множини {a,b,c} маємо Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}.   ПОЧАТКИ ТЕОРІЇ ЙМОВІРНОСТЕЙ   § 1. Про предмет теорії ймовірностей До цього часу розглядалися задачі, в яких результат дії був однозначно ...

Скачать
62281
2
3

... аксіоматичного визначення поняття ймовірності П.Л. Чебишев (1821–1894 р.) був творцем і ідейним керівником петербурзької математичної школи. Чебишев зіграв велику роль у розвитку багатьох розділів математики, у тому числі теорії ймовірностей. У своїй магістерській дисертації в першому розділі він уводить поняття ймовірності. Для цього він, насамперед, визначає рівно можливі події: «Якщо з ...

Скачать
142838
20
5

... і, нарешті, крипторотоколу. Це все було зроблено для того, щоб полегшати формалізування опису протоколів для доказування їхньої стійкості. Розділ 3. Оцінка стійкості криптографічних протоколів на основі імовірнісних моделей 3.1. Методика оцінки стійкості Формальний доказ стійкості в рамках обчислювальної моделі складається з трьох етапів. 1. Формальна поведінка учасників протоколу і ...

Скачать
4793
0
0

... п випробувань проводити в однакових умовах і імовірність появи події А в усіх випробуваннях однакова та не залежить від появи або непояви А в інших випробуваннях, то таку послідовність незалежних випробувань називають схемою Бернуллі. Нехай випадкова подія А може з'явитись у кожному випробуванні з імовірністю Р(А) = р або не з'явитись з імовірністю q = Р{А) = 1 - р. Поставимо задачу: знайти імов ...

0 комментариев


Наверх