4. Теорема Бернуллі про частоту ймовірності
Теорема. Імовірність того, що в n незалежних випробуваннях, у кожному з яких імовірність появи події дорівнює p, абсолютна величина відхилення відносної частоти появи події від імовірності появи події не перевищить позитивного числа , приблизно дорівнює подвоєної функції Лапласа при :
.
Доказ. Будемо вважати, що виробляється n незалежних випробувань, у кожному з яких імовірність появи події А постійна й дорівнює p. Поставимо перед собою задачу знайти ймовірність того, що відхилення відносної частоти від постійної ймовірності p по абсолютній величині не перевищує заданого числа . Інакше кажучи, знайдемо ймовірність здійснення нерівності
. (*)
Замінимо нерівність (*) йому рівносильними:
.
Множачи ці нерівності на позитивний множник , одержимо нерівності, рівносильні вихідному:
.
Тоді ймовірність знайдемо в такий спосіб:
.
Значення функції перебуває по таблиці(див. додаток 2).
Приклади
№20. Імовірність того, що деталь не стандартна, p=0,1. Знайти ймовірність того, що серед випадково відібраних 400 деталей відносна частота появи нестандартних деталей відхилиться від імовірності p=0,1 по абсолютній величині не більш, ніж на 0,03.
Рішення. n=400; p=0,1; q=0,9; =0,03. Потрібно знайти ймовірність . Користуючись формулою
,
маємо
.
По таблиці додатка 2 знаходимо . Отже, . Отже, шукана ймовірність дорівнює 0,9544.
№21. Імовірність того, що деталь не стандартна, p=0,1. Знайти, скільки деталей треба відібрати, щоб з імовірністю, рівної 0,9544, можна було затверджувати, що відносна частота появи нестандартних деталей(серед відібраних) відхилиться від постійної ймовірності p по абсолютній величині не більше ніж на 0,03.
Рішення. За умовою, p=0,1; q=0,9; =0,03; . Потрібно знайти n. Скористаємося формулою
.
У силу умови
Отже,
По таблиці додатка 2 знаходимо . Для відшукання числа n одержуємо рівняння . Звідси шукане число деталей n=400.
№22. Імовірність появи події в кожному з незалежних випробувань дорівнює 0,2. Знайти, яке відхилення відносної частоти появи події від його ймовірності можна чекати з імовірністю 0,9128 при 5000 випробуваннях.
Рішення. Скористаємося тією же формулою, з якої треба:
.
Література
1. Гмурман Е.В. Теорія ймовірностей і математична статистика. – К., 2003
2. Гмурман Е.В. Керівництво до рішення задач по теорії ймовірностей і математичній статистиці. – К., 2004.
3. Гнеденко Б.В. Курс теорії ймовірностей. – К., 2007.
4. Колемаєв В.А., Калініна В.Н., Соловйов В.И., Малихин В.І., Курочкин О.П. Теорія ймовірностей у прикладах і задачах. – К., 2004.
5. Вентцель Е.С. Теорія ймовірностей. – К., 2004
Додатки
Додаток 1
Таблиця значень функції
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1.6 | 1109 | 1092 | 1074 | 1057 | 1040 | 1023 | 1006 | 0989 | 0973 | 0957 |
1.7 | 0940 | 0925 | 0909 | 0893 | 0878 | 0863 | 0648 | 0833 | 0818 | 0804 |
1.8 | 0790 | 0775 | 0761 | 0748 | 0734 | 0721 | 0707 | 0694 | 0681 | 0669 |
1.9 | 0656 | 0644 | 0632 | 0620 | 0608 | 0596 | 0584 | 0573 | 0562 | 0551 |
2,0 | 0540 | 0529 | 0519 | 0508 | 0498 | 0488 | 0478 | 0468 | 0459 | 0449 |
2.1 | 0440 | 0431 | 0422 | 0413 | 0404 | 0396 | 0387 | 0379 | 0371 | 0363 |
2.2 | 0355 | 0347 | 0339 | 0332 | 0325 | 0317 | 0310 | 0303 | 0297 | 0290 |
2.3 | 0283 | 0277 | 0270 | 0264 | 0258 | 0252 | 0246 | 0241 | 0235 | 0229 |
2,4 | 0224 | 0219 | 0213 | 0208 | 0203 | 0198 | 0194 | 0189 | 0184 | 0180 |
2.5 | 0175 | 0171 | 0167 | 0163 | 0158 | 0154 | 0151 | 0147 | 0143 | 0139 |
2.6 | 0136 | 0132 | 0129 | 0126 | 0122 | 0119 | 0116 | 0113 | 0110 | 0107 |
2,7 | 0104 | 0101 | 0099 | 0096 | 0093 | 0091 | 0088 | 0086 | 0084 | 0081 |
2,8 | 0079 | 0077 | 0075 | 0073 | 0071 | 0069 | 0067 | 0065 | 0063 | 0061 |
2.9 | 0060 | 0058 | 0056 | 0055 | 0053 | 0051 | 0050 | 0048 | 0047 | 0043 |
3,0 | 0044 | 0043 | 0042 | 0040 | 0039 | 0038 | 0037 | 0036 | 0035 | 0034 |
3,1 | 0033 | 0032 | 0031 | 0030 | 0029 | 0028. | 0027 | 0026 | 0025 | 0025 |
3,2 | 0024 | 0023 | 0622 | 0022 | 0021 | 0020 | 0020 | 0019 | 0018 | 0018 |
3,3 | 0017 | 0017 | 0016 | 0016 | 0015 | 0015 | 0014 | 0014 | 0013 | 0013 |
3,4 | 0012 | 0012 | 0012 | 0011 | 0011 | 0010 | 0010 | 0010 | 0009 | 0009 |
3,5 | 0009 | 0008 | 0008 | 0008 | 0008 | 0007 | 0007 | 0007 | 0007 | 0006 |
3,6 | 0006 | 0006 | 0006 | 0005 | 0005 | 0005 | 0005 | 0005 | 0005 | 0004 |
3,7 | 0004 | 0004 | 0004 | 0004 | 0004 | 0004 | 0003 | 0003 | 0003 | 0003 |
3,8 | 0003 | 0003 | 0003 | 0003 | 0003 | 0002 | 0002 | 0002 | 0002 | 0002 |
3,9 | 0002 | 0002 | 0002 | 0002 | 0002 | 0002 | 0002 | 0002 | 0001 | 0001 |
Додаток 2
Таблиця значень функції
x | x | x | x | ||||
0900 | 0,0000 | 0,32 | 0,1255 | 0,64 | 0,2389 | 0,96 | 0,3315 |
0,01 | 0,0040 | 0,33 | 0,1293 | 0,65 | 0,2422 | 0,97 | 0,3340 |
0,02 | 0,0080 | 0,34 | 0,1331 | 0,66 | 0,2454 | 0,98 | 0,3365 |
0,03 | 0,0120 | 0,35 | 0,1368 | 0,67 | 0,2486 | 0.99 | 0,3389 |
0,04 | 0,0160 | 0,36 | 0,1406 | 0,68 | 0,2517 | 1,00 | 0,3413 |
0,05 | 0,0199 | 0,37 | 0,1443 | 0,69 | 0,2549 | 1,01 | 0,3438 |
0,06 | 0,0239 | 0,38 | 0,1480 | 0,70 | 0,2580 | 1,02 | 0,3461 |
0,07 | 0,0279 | 0,39 | 0,1517 | 0,71 | 0,2611 | 1,03 | 0,3485 |
0,08 | 0,0319 | 0,40 | 0,1554 | 0,72 | 0,2642 | 1,04 | 0,3508 |
0,09 | 0,0359 | 0,41 | 0,1591 | 0,73 | 0,2673 | 1,05 | 0,3531 |
0,10 | 0,0398 | 0,42 | 0,1628 | 0,74 | 0,2703 | 1,06 | 0,3554 |
0,11 | 0,0438 | 0,43 | 0,1664 | 0,75 | 0,2734 | 1,07 | 0,3577 |
0,12 | 0,0478 | 0,44 | 0,1700 | 0,76 | 0,2764 | 1,08 | 0,3599 |
0,13 | 0,0517 | 0,45 | 0,1736 | 0,77 | 0,2794 | 1.09 | 0,3621 |
0,14 | 0,0557 | 0,46 | 0,1772 | 0,78 | 0,2823 | 1.10 | 0,3643 |
0,15 | 0,0596 | 0,47 | 0,1808 | 0,79 | 0,2852 | 3665 | 0,3665 |
0,16 | 0,0636 | 0,48 | 0,1844 | 0,80 | 0,2881 | 3686 | 0,3686 |
0,17 | 0,0675 | 0,49 | 01879 | 0,81 | 0,2910 | 1,13 | 0,3708. |
0,18 | 0,0714 | 0,50 | 0,1915 | 0,82 | 0,2939 | 1,14 | 0,3729 |
0,19 | 0,0753 | 0,51 | 0,1950 | 0,83 | 0,2967 | 1,15 | 0,3749 |
0,20 | 0,0793 | 0,52 | 0,1985 | 0,84 | 0,2995 | 1,16 | 0,3770 |
0,21 | 0,0832 | 0,53 | 0,2019 | 0,85 | 0,3023 | 1,17 | 0,3790 |
0,22 | 0,0871 | 0,54 | 0,2054 | 0,86 | 0,3051 | 1,18 | 0,3810 |
0,23 | 0,0910 | 0,55 | 0,2088 | 0,87 | 0,3078 | 1,19 | 0,3830 |
0,24 | 0,0948 | 0,56 | 0,2123 | 0,88 | 0,3106 | 1,20 | 0,3849 |
0,25 | 0,0987 | 0,57 | 0,2157 | 0,89 | 0,3133 | 1.21 | 0,3869 |
0,26 | 0,1026 | 0,58 | 0,2190 | 0,90 | 0,3159 | 1,22 | 0/3883 |
0,27 | 0,1064 | 0,59 | 0,2224 | 0,91 | 0,3186 | 1,23 | 0,3907 |
0,28 | 0,1103 | 0,60 | 0,2257 | 0,92 | 0,3212 | 1.24 | 0,3925 |
0,29 | 0,1141 | 0,61 | 0,2291 | 0,93 | 0,3238 | 1,25 | 0,3944 |
0,30 | 0,1179 | 0,62 | 0,2324 | 0,94 | 0,3264 | ||
0,31 | 0,1217 | 0,63 | 0,2357 | 0,95 | 0,3289 |
x | x |
| x | x | |||
1,26 | 0,3962 | 1,59 | 0,4441 | 1,92 | 0,4726 | 2,50 | 0,4938 |
1,27 | 0,3980 | 1,60 | 0,4452 | 1,93 | 0,4732 | 2,52 | 0,4941 |
1,28 | 0,3997 | 1,61 | 0,4463 | 1,94 | 0,4738 | 2,54 | 0,4945 |
1,29 | 0.4015 | 1,62 | 0,4474 | 1,95 | 0,4744 | 2,56 | 0,4948 |
1,30 | 0,4032 | 1,63 | 0.4484 | 1.96 | 0,4750 | 2,58 | 0,4951 |
1,31 | 0,4049 | 1,64 | 0,4495 | 1,97 | 0,4756 | 2,60 | 0,4953 |
1,32 | 0.4066 | 1,65 | 0,4505 | 1,98 | 0,4761 | 2,62 | 0,4956 |
1,33 | 0,4082 | 1,66 | 0,4515 | 1,99 | 0,4767 | 2,64 | 0,4959 |
1,34 | 0.4099 | 1,67 | 0.4525 | 2.00 | 0,4772 | 2,66 | 0,4961 |
1.3S | 0.4115 | 1,68 | 0,4535 | 2,02 | 0,4783 | 2,68 | 0,4963 |
1,36 | 0.4131 | 1,69 | 0,4545 | 2,04 | 0,4793 | 2,70 | 0,4965 |
1,37 | 0.4147 | 1,70 | 0,4554 | 2,06 | 0,4803 | 2,72 | 0,4967 |
1,38 | 0.4162 | 1.71 | 0,4564 | 2,08 | 0,4812 | 2,74 | 0,4969 |
1,39 | 0.4177 | 1,72 | 0,4573 | 2,10 | 0,4821 | 2,76 | 0,4971 |
1.40 | 0,4192 | 1,73 | 0,4582 | 2,12 | 0,4830 | 2,78 | 0,4973 |
1.41 | 0,4207 | 1.74 | 0,4591 | 2,14 | 0,4838 | 2,80 | 0,4974 |
1.42 | 0.4222 | 1,75 | 0.4599 | 2,16 | 0,4846 | 2,82 | 0,4976 |
1.43 | 0.4236 | 1,76 | 0,4608 | 2,18 | 0,4854 | 2,84 | 0,4977 |
1.44 | 0,4251 | 1.77 | 0,4616 | 2,20 | 0,4861 | 2,86 | 0,4979 |
1,45 | 0.4265 | 1,78 | 0.4625 | 2,22 | 0,4868 | 2,88 | 0,4980 |
1.46 | 0,4279 | 1,79 | 0,4633 | 2,24 | 0,4875 | 2,90 | 0,4981 |
1.47 | 0,4292 | 1,80 | 0,4641 | 2,26 | 0,4881 | 2,92 | 0,4982 |
1,48 | 0,4306 | 1.81 | 0,4649 | 2,28 | 0,4887 | 2,94 | 0,4984 |
1,49 | 0.4319 | 1,82 | 0,4656 | 2,30 | 0,4893 | 2,96 | 0,4985 |
1.50 | 0,4332 | 1,83 | 0,4664 | 2,32 | 0,4898 | 2.98 | 0,4986 |
1,51 | 0,4345 | 1,84 | 0,4671 | 2,34 | 0,4904 | 3,00 | 0,49865 |
1.52 | 0,4357 | 1,85 | 0,4678 | 2,36 | 0,4909 | 3,20 | 0,49931 |
1.53 | 0,4370 | 1,86 | 0,4686 | 2,38 | 0,4913 | 3.40 | 0,49966 |
1.54 | 0,4382 | 1,87 | 0,4693 | 2,40 | 0,4918 | 3,60 | 0,49984 |
1,55 | 0,4394 | 1.88 | 0,4699 | 2,42 | 0,4922 | 3,80 | 0,49992 |
1.S6 | 0,4406 | 1.89 | 0,4706 | 2,44 | 0,4927 | 4,00 | 0,49996 |
1,57 | 0,4418 | 1,90 | 0,4713 | 2,46 | 0,4931 | 4,50 | 0,49999 |
1,58 | 0,4429 | 1,91 | 0,4719 | 2,48 | 0,4934 | 5,00 | 0,49999 |
... . Поклавши у формулі (4) а = b = 1, дістанемо Нехай маємо скінченну множину, яка містить п елементів. Тоді кількість підмножин цієї множини дорівнює 2n. Наприклад, для множини {a,b,c} маємо Ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. ПОЧАТКИ ТЕОРІЇ ЙМОВІРНОСТЕЙ § 1. Про предмет теорії ймовірностей До цього часу розглядалися задачі, в яких результат дії був однозначно ...
... аксіоматичного визначення поняття ймовірності П.Л. Чебишев (1821–1894 р.) був творцем і ідейним керівником петербурзької математичної школи. Чебишев зіграв велику роль у розвитку багатьох розділів математики, у тому числі теорії ймовірностей. У своїй магістерській дисертації в першому розділі він уводить поняття ймовірності. Для цього він, насамперед, визначає рівно можливі події: «Якщо з ...
... і, нарешті, крипторотоколу. Це все було зроблено для того, щоб полегшати формалізування опису протоколів для доказування їхньої стійкості. Розділ 3. Оцінка стійкості криптографічних протоколів на основі імовірнісних моделей 3.1. Методика оцінки стійкості Формальний доказ стійкості в рамках обчислювальної моделі складається з трьох етапів. 1. Формальна поведінка учасників протоколу і ...
... п випробувань проводити в однакових умовах і імовірність появи події А в усіх випробуваннях однакова та не залежить від появи або непояви А в інших випробуваннях, то таку послідовність незалежних випробувань називають схемою Бернуллі. Нехай випадкова подія А може з'явитись у кожному випробуванні з імовірністю Р(А) = р або не з'явитись з імовірністю q = Р{А) = 1 - р. Поставимо задачу: знайти імов ...
0 комментариев