інтегральні характеристики векторних полів
1. Диференціальні операції другого порядку
Нехай в області задані скалярне поле і векторне поле , причому функції мають в області неперервні частинні похідні другого порядку. Тоді і є диференційовними векторними полями, а – диференційовним скалярним полем.
До векторних полів і можна застосувати операції обчислення дивергенції і ротора, а до скалярного поля – операцію обчислення градієнта. Таким чином, отримуємо повторні операції:
.
Операцію називають оператором Лапласа і позначають також символом :
.
З допомогою оператора Гамільтона оператор Лапласа записується у вигляді
.
Враховуючи, що
,
дістаємо
.
Функція , яка задовольняє в деякій області рівняння Лапласа , називається гармонічною в цій області. Наприклад, лінійна функція є гармонічною в довільній області. Оператор Лапласа широко застосовується в рівняннях математичної фізики. Відзначимо, зокрема, що потенціал електричного поля точкового заряду або поля тяжіння точкової маси, який має вигляд , при задовольняє рівняння Лапласа:
(потенціальне векторне поле є безвихровим) і
(векторне поле є соленоїдальним).
1. Дві інші повторні операції і пов’язані співвідношенням
, (1)
де – вектор-функція, координатами якої є результати застосування оператора Лапласа до функцій .
2. Розкладання векторного поля на суму потенціального і соленоїдального полів
Довільне неперервно диференційовне векторне поле може бути зображено у вигляді
, (2)
де – потенціальне поле, – соленоїдальне поле.
Дійсно, за означенням потенціальне векторне поле є градієнтом деякого скалярного поля : . Тому для вектора із рівності (2) маємо
. (3)
Щоб векторне поле було соленоїдальним, воно має задовольняти умову , звідси, враховуючи рівність (3), знаходимо
.
Таким чином, для скалярного потенціала поля отримуємо рівняння
, (4)
де – відома функція даного поля .
Отже, якщо функція є розв’язком рівняння (4), то, поклавши , , отримаємо зображення поля у вигляді (2), де – потенціальне поле, – соленоїдальне поле.
Рівняння (2) – неоднорідне рівняння в частинних похідних другого порядку, яке називається рівнянням Пуассона:
.
Відзначимо, що це рівняння має (нескінченну) множину розв’язків, тому зображення поля у вигляді (2) не є єдиним.
... випадків, аварій, а з цим і простоїв на підприємстві, укріпити та створити культуру трудової діяльності. Виконання та розробка дипломного проекту “ Розробка дослідження системи керування електроприводом змінного струму дизель-потягу з використанням нейронних мереж ” відбувається за допомогою комп'ютера, тому питання охорони праці розглядаються щодо забезпечення здорових і безпечних умов роботи ...
к джерела електричного поля представляють у виді еквівалентного електричного генератора. Під ним мається на увазі модельна фізична система, що повинна задовольняти двом вимогам: розрахункові потенціали електричного поля еквівалентного генератора в різних крапках організму повинні бути рівні реальним потенціалам; при варіюванні параметрів еквівалентного генератора повинні відбуватися такі ж зміни ...
... О. Костиков, В. Н. Голощапов, Г. К. Вороновский, А. Ю. Козлоков // Енергетика та електрифікація – 2007. – №9. – С. 17 – 21. АНОТАЦІЯ Альохіна С. В. Моделювання теплових процесів в елементах енергетичного обладнання ТЕС та АЄС шляхом розв’язання спряжених задач теплообміну. – Рукопис. Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.14.06 – технічна теплофі ...
... сути, может приводить к необоснованному пессимизму в оценке практической ценности алгоритмов МГУА. Показано, что реалистичный подход к использованию алгоритмов самоорганизации в задаче синтеза ИТ обработки сигналов, основан на двухэтапном решении задачи. Первый этап предусматривает переход от исходного пространства наблюдений к обоснованному набору потенциально полезных признаков (потенциальных ...
0 комментариев