4. Властивості соленоїдального поля

Як відомо, векторне поле , яке задовольняє в області  умову , називається соленоїдальним в цій області. Нехай область  є об’ємно однозв’язною. Це означає, що, якщо кусково-гладка замкнена поверхня  лежить в області , то і область, яка обмежує поверхню , цілком належить області . Прикладами об’ємно однозв’язних областей є куля, паралелепіпед, тор. Відзначимо, що тор не є поверхнево однозв’язною областю. Область, яка знаходиться між двома сферами, не є об’ємно однозв’язною (але є поверхнево однозв’язною).

Із формули Остроградського-Гаусса випливає, що соленоїдальне поле в взаємно однозв’язній області має таку властивість: потік соленоїдального поля через довільну замкнену поверхню, яка знаходиться в цій області, дорівнює нулю.

Відзначимо, що, якщо область не є об’ємно однозв’язною, то потік соленоїдального (в цій області) поля через замкнену поверхню, яка знаходиться в області, може бути відмінним від нуля. Так електричне поле  точкового заряду, який міститься в точці , є соленоїдальним в кулі з викинутим центром ( при ).

Слово «соленоїдальне» означає «трубасте». Для соленоїдального поля є справедливим закон збереження інтенсивності векторної трубки. З’ясуємо суть цього закону.

Нехай  – соленоїдальне поле. Розглянемо відрізок «векторної трубки», тобто область, обмежену двома перерізами  і  та боковою поверхнею , яка складається із векторних ліній (рис. 1). Застосуємо до такої області формулу Остроградського-Гаусса (8). Оскільки в соленоїдальному полі , то потік векторного поля  через поверхню області дорівнює нулю:  ( – одиничний вектор зовнішньої нормалі). На боковій поверхні  маємо , тому .

Отже,

.

Рисунок 1 – Відрізок «векторної трубки»

Змінимо на перерізі  напрям нормалі  на протилежний ( – внутрішня нормаль до ). Тоді отримаємо


,

де обидва потоки через перерізи  і  обчислюються в напрямі векторних ліній.

Таким чином, у соленоїдальному (трубчастому) векторному полі  потік через будь-який переріз векторної трубки набуває одного й того самого значення. Це і є закон збереження інтенсивності збереження векторної трубки.

 

5. Інваріантне означення дивергенції

Нехай в області , обмеженій поверхнею , визначено векторне поле . Запишемо формулу (8) для векторного поля  в області . Застосовуючи до лівої частини цієї формули теорему про середнє, отримаємо

або

,

де  – об’єм області , а  – деяка точка області .

Зафіксуємо точку  і стягуватимемо область  до точки  так, щоб  залишалася внутрішньою точкою області . Тоді , а  прямуватиме до . Внаслідок неперервності  значення  прямуватиме до . Таким чином, отримуємо

. (9)

У праву частину формули (9) входять величини, інваріантні відносно вибору системи координат (потік векторного поля через поверхню і об’єм області). Тому формула (9) дає інваріантне означення дивергенції векторного поля. Отже, дивергенція векторного поля залежить тільки від самого поля і не залежить від вибору системи координат.


Информация о работе «Інтегральні характеристики векторних полів»
Раздел: Математика
Количество знаков с пробелами: 12525
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
162243
21
52

... випадків, аварій, а з цим і простоїв на підприємстві, укріпити та створити культуру трудової діяльності. Виконання та розробка дипломного проекту “ Розробка дослідження системи керування електроприводом змінного струму дизель-потягу з використанням нейронних мереж ” відбувається за допомогою комп'ютера, тому питання охорони праці розглядаються щодо забезпечення здорових і безпечних умов роботи ...

Скачать
21654
1
9

к джерела електричного поля представляють у виді еквівалентного електричного генератора. Під ним мається на увазі модельна фізична система, що повинна задовольняти двом вимогам: розрахункові потенціали електричного поля еквівалентного генератора в різних крапках організму повинні бути рівні реальним потенціалам; при варіюванні параметрів еквівалентного генератора повинні відбуватися такі ж зміни ...

Скачать
41892
0
0

... О. Костиков, В. Н. Голощапов, Г. К. Вороновский, А. Ю. Козлоков // Енергетика та електрифікація – 2007. – №9. – С. 17 – 21. АНОТАЦІЯ Альохіна С. В. Моделювання теплових процесів в елементах енергетичного обладнання ТЕС та АЄС шляхом розв’язання спряжених задач теплообміну. – Рукопис. Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.14.06 – технічна теплофі ...

Скачать
23770
3
11

... сути, может приводить к необоснованному пессимизму в оценке практической ценности алгоритмов МГУА. Показано, что реалистичный подход к использованию алгоритмов самоорганизации в задаче синтеза ИТ обработки сигналов, основан на двухэтапном решении задачи. Первый этап предусматривает переход от исходного пространства наблюдений к обоснованному набору потенциально полезных признаков (потенциальных ...

0 комментариев


Наверх