6.7 Процесс топливоподачи

 

Основные понятия и параметры процесса топливоподачи

1.  Цикловая подача - подача топлива за один рабочий цикл

gц = (ge Ne m / 60 n i) г/цикл,

где: m - коэффициент тактности, для 2-х т. дв. =1; для 4-х т. дв. =2;

n – об/мин; i - число цилиндров.

2.  Фазы подачи – φнпн, φкн, φкпф, φнпф – фазы начала и конца подачи по насосу и по форсунке.


φнпф = φф.о. или угол опережения впрыска топлива,

φп = φнпф + φкпф – продолжительность подачи топлива.

3. Pн, Pф, Pн. макс, Pф.макс, Pф.о., Pф.з., Pост. - давления топлива в насосе, форсунке, максимальные, открытия иглы, закрытия иглы, остаточное в топливопроводе между впрысками.

Остановимся более подробно на величине цикловой подачи.

В свою очередь,

gц = (Fпл ha ρт ηпод) 10-3 г/цикл;

Fпл = πd2 / 4- площадь плунжера м3; ha - активный ход плунжера м, ρт - плотность топлива кг/м3.

Коэффициент подачи топливного насоса ηпод - , представляющий собой отношение действительно поданной порции топлива gц к теоретически возможной и равной объему, описываемому плунжером на протяжении его активного хода, умноженному на плотность. Коэффициент подачи величина переменная и зависит от большого числа факторов, к числу которых относятся геометрические и конструктивные соотношения в ТНВД, сжимаемость топлива и явления дросселирования в периоды наполнения и отсечки и, конечно, утечки в системе насос-форсунка. По опытным данным ηпод = 0,75-1,1, на него существенное влияние оказывают число оборотов и величина цикловой подачи (рис. 6.7.1.). Увеличение gц (ha) приводит к росту коэффициента подачи. Важная особенность изменения ηпод заключается в том, что при снижении оборотов от номинальных до ≈ 75% nном и сохранении положения топливной рейки неизменным, он увеличивается (на 10-15%) и лишь затем падает. Это увеличение влечет за собой рост цикловой подачи и, соответственно, - среднего эффективного давления


Pe = k gц ηе,

и развиваемого двигателем крутящего момента Мкр, что благоприятно сказывается на тяговых свойствах двигателя и устойчивости режима малых оборотов.

Пример – главный двигатель буксирующего судна. С увеличением силы тяги на гаке обороты двигателя будут падать и, если крутящий момент не будет увеличиваться, то обороты и тяговое усилие будут продолжать снижаться. Если же при снижении оборотов, цикловая подача за счет роста коэффициента подачи растут, то, соответственно, увеличиваются момент и сила тяги.

Рис. 6.7.1. Кривые изменения коэффициента подачи в функции оборотов и величины цикловой подачи (ha).

Развитие процесса топливоподачи

О том, как развивается процесс топливоподачи, можно проследить по приведенным на рис. 6.7.2. кривым: а) давлений топлива у форсунки, б) хода иглы форсунки при ее открытии, в) интегрального распределения подачи за один впрыск по углу п.к.в. (закона подачи).

Давление топлива в топливопроводе и в форсунке поднимается до значения Рфо, при котором игла форсунки поднимается и, в связи с истечением топлива под нее, в этот момент обычно отмечается небольшой местный провал давления. Однако этот провал быстро компенсируется в связи с тем, что плунжер продолжает сжимать топливо, и давление поднимается до максимального значения – Pмакс. Дальнейший рост давления прекращается, так как в насосе начинается отсечка (или плунжер приходит в ВМТ кулачка) и давление падает. По достижении Рфз, при котором пружина сажает иглу на седло, впрыск топлива прекращается.

В форсунке и в топливопроводе при наличии нагнетательного клапана с отсасывающим пояском устанавливается давление, равное остаточному - Рост, сохраняющееся до следующего цикла подачи топлива. При отсутствии разгрузки устанавливается более высокое давление, равное Р ф.з' что провоцирует появление подтекания топлива под иглу.

Рис. 6.7.2. Кривые: а). давление впрыска у форсунки, б). хода иглы форсунки, в). законы подачи топлива в пределах цикла.

В общем случае процесс топливоподачи в системе «ТНВД - форсуночный топливопровод – форсунка» можно условно подразделить на следующие этапы:

1 этап – наполнение полости ТНВД топливом, поступающим от подкачивающего насоса под давлением 0,4-0,5 МПа. Начало - открытие плунжером при его движении вниз впускного окна (клапана).

Окончание - закрытие плунжером впускного окна (клапана) при его движении из крайнего нижнего положения вверх (геометрическое окончание наполнения). Действительное окончание наполнения происходит раньше, так как при подходе верхней кромки плунжера к верхней кромке окна благодаря возникающему в остающейся узкой щели дросселированию начинается сжатие топлива, давление топлива начинает расти и перепуск прекращается. При этом, чем больше обороты двигателя, тем больше сказывается дросселирование и тем раньше (по углу поворота вала) заканчивается наполнение и начинается сжатие топлива. Таким образом, активный ход плунжера несколько увеличивается.

2 этап – сжатие топлива в надплунжерной полости насоса от давления подкачки до давления, при котором открывается нагнетательный клапан насоса Pоткр.н.кл. = Pзатяга.пруж.кл. + Pост.. Здесь уместно отметить, что существенную роль в процессе топливоподачи играет сжимаемость топлива. Коэффициент сжимаемости топлив а = (0,6 - 1,0) 10-6 мЗ/кг. Благодаря сжимаемости плунжер затрачивает часть своего хода на сжатие топлива

Расчетное уравнение –

Fпл Спл dt = a V1 dp (1)

где: Fпл – площадь плунжера, Спл – скорость плунжера, t - время, V1 – объем надплунжерной полости насоса, Р - давление топлива.

3 этап – продолжение сжатия (соответствующего роста давления) топлива в объеме полости насоса V1 и в объеме топливопровода и форсунки V2. Начало – открытие нагнетательного клапана. Окончание – достижение давления открытия иглы Рфо.

Расчетное уравнение –


Fпл Спл dt = a (V1 + V1) dp (2)

4 этап – впрыск топлива в цилиндр с момента открытия иглы и до момента начала отсечки в ТНВД. Начало этапа - момент подъема давления топлива у иглы форсунки до величины давления открытия иглы. Окончание - начало отсечки в ТНВД, соответствующее открытию отсечной кромкой плунжера отсечного отверстия (открытию отсечного клапана в насосе клап. типа) и закрытие нагнетательного клапана.

Расчётное уравнение –

Fпл Спл dt = a (V1 + V2) dp + μ fc (2/ρ)1/2 (Pт – Pц.ср)1/2 dt (3)

 

Объёмная подача Объём сжимаемого Расход топлива

 плунжера  топлива  через форсунку

где: μ - коэффициент истечения сопловых отверстий, fc - суммарное сечение сопловых отверстий, ρ - плотность топлива, Рт - давление топлива в период впрыска, Pц.ср. - среднее давление в камере сгорания в период впрыска.

5 этап - продолжение истечения (впрыска) топлива из форсунки от момента отсечки в насосе и посадки нагнетательного клапана на седло до момента, когда давление у форсунки упадет до давления посадки иглы на седло (закрытие иглы). Впрыск происходит за счет расширения топлива, оставшегося в топливопроводе и форсунке (в объеме V2).

Расчётное уравнение –

 

a V2 dp = - μ fc (2 (Pт – Pц.ср) / ρ)1/2 dt (4)

При наличии у нагнетательного клапана разгрузочного пояска давление в топливопроводе и форсунке резко падает до Рост ≤ Рзакр. иглы и тогда последняя фаза впрыска практически отсутствует. Это хорошо, так как истечение топлива из форсунки при понижающихся давлениях впрыска отрицательно сказывается на распыливании, сокращается длина факела и проникновение капель в богатые кислородом периферийные зоны камеры сгорания, тем самым, приводящее к неполному сгоранию и дымлению на выхлопе.

На рис 6.7.2. в представлена интегральная кривая, показывающая как распределяется цикловая подача топлива по углу поворота коленчатого вала. В частности, на рисунке для примера показано какое количество топлива от всей величины цикловой подачи попадает в цилиндр к моменту прихода поршня в ВМТ.


Список литературы

1.  Возницкий И.В., Камкин С.В., Шмелев В.П., Осташенко В.Ф. “Рабочие процессы судовых дизелей” издание 2-е, переработанное и дополненное. Москва «ТРАНСПОРТ» 1990 г.

2.  Гаврилов В.С., Камкин С.В., Шмелёв В.П. “Техническая эксплуатация судовых дизельных установок” Москва «ТРАНСПОРТ» 1985 г.

3.  Волочков В.А. “Расчет рабочих процессов судовых дизелей” учебное пособие. Москва В/О «Мортехинформреклама» 1987 г.

4.  Симаков А.С. Методические указания к расчетно-графической работе на тему: “Расчет рабочего цикла судового двухтактного дизеля”. Санкт-Петербург 2003 г.

5.  Возницкий И.В. “Современные судовые среднеоборотные двигатели” издание 3-е, учебное пособие по специальности 2405. Санкт-Петербург 2006 г.

6.  Возницкий И.В. “Топливная аппаратура судовых дизелей, конструкция, проверка состояния и регулировка” учебное пособие по специальности 180403.00. Моркнига 2007.

7.  Возницкий И.В., Михеев Е.Г. “Судовые дизели и их эксплуатация”. Москва «ТРАНСПОРТ» 1990 г.


Информация о работе «Судовой двигатель внутреннего сгорания L21/31»
Раздел: Транспорт
Количество знаков с пробелами: 82455
Количество таблиц: 3
Количество изображений: 17

0 комментариев


Наверх