1. Х+У; М(Х+У)

2. М(Х)+М(У)

6) М(Х-М(Х))=0

(Х-М(Х)) – отклонение случайной величины от ее математического

Действия над дискретными случайными величинами

ДСВ можно 1) умножать на число,

 2) возводить в степень.

1) умножение на число

2) возведение в степень

Две ДСВ называются независимыми, если событие Аi, состоящее в том, что случайная величина Х примет значения ,  и

событие будут независимыми. В противном случае ДСВ называются зависимыми.

Несколько ДСВ называются взаимно независимыми, если закон распределения одной из них не зависит от того, какие ранее возможные значения приняли остальные величины.

Пример.

 

Если в верхней строке таблицы появляются одинаковые значения, то соответствующие столбцы объединяем и их вероятности складываем.

Действие вычитания и умножения выполняются аналогично.

 

Случайные величины

Дискретные случайные величины.

1) Случайной величиной называют величину, которая в результате испытания примет одно и только одно значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены. Случайные величины могут быть:

дискретные (прерывные), которые принимают лишь изолированные значения с определенными вероятностями. Их число может быть конечным и бесконечным (счетное). Пример: среди 100 новорож-денных число родившихся мальчиков от 1 до 10.

Непрерывные, которые могут принимать все значения из некоторого конечного промежутка. Пример: множество чисел принадлежащих промежутку

Дискретные случайные величины. Обозначаются заглавными буквами латинского алфавита X, Y,…, а их возможные значения х1, х2,…, хn.

Закон распределения ДСВ – Это соответствие между возможными значениями и их вероятностями. Его можно задать аналитически, таблично и графически, чаще всего задают таблицей:

 

Задача. В денежно-вещевой лотерее выпущено 110 билетов. Разыгрывается приз 50000 рублей и 10 призов по 1000 рублей. Найти закон распределения случайной величины Х – стоимость выигрыша для владельца одного билета.

 Х 500000 1000 0
Р 1/110 10/110 99/110

Дисперсия (рассеянное значение случайной величины вокруг математического ожидания этой величины)

Дисперсия – математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

1)

2)

Пример.

Х 1 2  5
Р 0,3 0,5  0,2

М(Х)=1*0,3+2*0,5+5*0,2+5*0,2=2,3


Информация о работе «Теория вероятностей и математическая статистика»
Раздел: Математика
Количество знаков с пробелами: 22058
Количество таблиц: 7
Количество изображений: 1

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
10566
0
2

... оценками. Например, среднее арифметическое, медиана, мода могут показаться вполне приемлемыми для оценивания математического ожидания М (Х) совокупности. Чтобы решить, какая из статистик в данном множестве наилучшая, необходимо определить некоторые желаемые свойства таких оценок, т.е. указать условия, которым должны удовлетворять оценки. Такими условиями являются: несмещенность, эффективности ...

Скачать
128040
14
4

... выборок. 5. Исследовательские проекты и их защита. 3 2 1 2 2 2 1 1 1 3 2 1 2 2   Всего 10 5 10   Итого 60 34   Глава 2 Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы 2.1. Организация при формировании пространственного образа, c использованием ...

Скачать
138817
24
10

... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1.  Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...

0 комментариев


Наверх