39. Определение обсервованной широты места судна по меридиональной высоте Солнца
Данный способ привлекает внимание своей простотой и малым объемом вычислений.
В процессе видимого суточного движения светило дважды пересекает плоскость меридиана наблюдателя. высота светила будет наибольшей в момент верхней кульминации и наименьшей в момент нижней кульминации.
Если в момент измерения наибольшей высоты Солнца заметить гринвичское время, то с помощью МАЕ (а в аварийном случае и без него) можно получить склонения Солнца на момент наблюдений.
jо =(90°- H) ±dNS (9.9)
т.е. обсервованная широта равна меридиональному зенитному расстоянию плюс-минус склонение светила, причем знак "плюс" берется при одноимённых широте и склонению, а знак "минус" - при разноимённых.
Если измерялась наименьшая высота Солнца H', что возможно при полярном дне, то:
jо =(90°- d) +H'
Последовательность действий при определении широты по измеренной меридиональной высоте Солнца.
1. Засчитать с помощью МАЕ судовое время кульминации Солнца и снять с морской навигационной карты счислимте координаты судна φс и λс на этот момент;
2. Подготовить секстан к дневным наблюдениям и определить по Солнцу поправку индекса i;
3. Измерить, если это возможно, наклонение видимого горизонта d;
4. За 5-7 минут да рассчитанного времени кульминации начать измерять высоты Солнца. Измерения прекратить после получения двух-трех убывающих отсчетов. Одновременно зафиксировать время измерения наибольшей высоты с точностью до 1 минуты;
5. Заметить, над какой точкой горизонта измерялась высота Солнца – N или S (измерить компаний пеленг на светило);
6. Рассчитать по рассмотренной выше методике обсервованную широту места судна.
40. Определение обсервованной широты места судна по высоте Полярной
В северном полушарии при широтах 5°-74° удобной звездой с точки зрения объема вычислений является Полярная - звезда α Малой Медведицы. Известно, что высота повышенного полюса мира равна географической широте места судна. Вблизи Северного полюса мира расположена Полярная звезда, которая имеет экваториальные координаты δ@89,2°N и α@33,9°. В своем суточном движении она описывает параллель радиуса ∆=90°-δ@0,8° (рис. 9.3).
Полярная | |
1 попр. | ТАБЛ.1 МАЕ по tм^ |
2 попр. | ТАБЛ. ΙΙ МАЕ по tм^ и h |
3 попр. | ТАБЛ. ΙΙΙ МАЕ по tм^ И ДАТЕ |
Σ | Ι + ΙΙ + ΙΙΙ |
Прив.h | Ист. h+Δhz |
φ0 | Прив.h+ Σ |
41. Назначение, принцип действия, состав, основные ТТХ низкоорбитных СНС. Принцип получения навигационного параметра
Спутниковая (космическая) навигационная система (СНС) предназначена для высокоточного определения координат места и составляющих скорости наземных, морских, речных, воздушных и других подвижных объектов в любой точке земного шара.
К низкоорбитным СНС относятся СНС отечественные СНС «Парус» и «Цикада» и подобная им американская СНС NNSS «Transit». Данные СНС построены на одних и тех же принципах и имеют одинаковую структуру. Несущественные различия есть в параметрах орбит, количестве НКА, организации траекторных измерений, математических методах прогнозирования и формах представления орбиты. Основные характеристики СНС «Парус», «Цикада» и «Transit» приведены в табл. 13.2.
Параметр | «Парус» | «Цикада» | «Transit» |
Зона действия | Без ограничений | Без ограничений | До широт ±88° |
Номинальное количество НКА | 6 | 4 | 6 |
Угол наклонения орбиты | 82,9° | 83° | 90° |
Высота орбиты в апогее | 1017 км | 1024 км | 1075 км |
Диапазон рабочих частот Мгц | 149,91-150,03 399,76-400,08 | 150,00 400,00 | 149,988 399,968 |
Геодезическая основа | Эллипсоид Красовского | Эллипсоид Красовского | Эллипсоид WGS-72 |
Шкала времени | Московское зимнее время | Московское зимнее время | Гринвичское время |
СКП 100м |
Определение местоположения путём измерения расстояний до объекта от точек с известными координатами — спутников. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. для определения 3d координат GPS-приёмнику нужно знать расстояние до трёх спутников и время GPS системы. благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. точно зная положение спутника, можно определить собственную скорость и координаты.
... “Плоды нашей владивостокской морской школы” и стали одной из основ этой самой почвы – на все грядущие 110 лет. 5. ПОЛОЖЕНИЕ ОБ АЛЕКСАНДРОВСКИХ МОРЕХОДНЫХ КЛАССАХ В г. ВЛАДИВОСТОКЕ 7 апреля 1890 г. § 1. Мореходные классы в г. Владивостоке учреждаются городским обществом на основании высочайше утвержденного 27 июня 1867 г. Положения о мореходных классах для преподавания в оных ...
... изучающая вопросы судовождения. Навигация – ведущий предмет среди других наук судовождения. Она разрабатывает основы судовождения, учёта движения судна в море, который обеспечивает безопасность плавания. Кроме того, рассматривает целый комплекс вопросов: основные понятия о Земле; способы определения мореплавателем основных направлений и расстояний на поверхности Земли; методы определения поправок ...
... достаточное количество карт с изолиниями системы LORAN-C, это облегчает судоводителю работу по обсервациям в Эгейском море, и также обеспечить определение места судна с требуемой точностью и периодичностью. 1.5 Сведения о портах Порт Южный ПОРТ ЮЖНЫЙ оборудован в Аджалыкском лимане в 4,2 мили к ENE от мыса Дофиновский. В лимане ведутся гидротехнические и дноуглубительные работы по дальнейшему ...
... содержит достаточное количество карт с изолиниями системы LORAN-C, это облегчает судоводителю работу по обсервациям в Средиземном море, и также обеспечить определение места судна с требуемой точностью и периодичностью. 1.5 Сведения о портах Порт Скадовск Порт Скадовс (46006 N, 32055 E) к оборудован в Джарылгачском заливе порт имеет открытый рейд; глубины на рейде менее 15 м, к берегу они ...
0 комментариев