5. С помощью коэффициента эластичности определим силу влияния фактора на результативный показатель.
Рассчитаем средние значения фактора и результативного показателя:
Средний коэффициент эластичности показывает, что в среднем при повышении размера жилой площади на 1% от своего среднего значения ее стоимость увеличивается на 0,682% от своего среднего значения.
6. Проверим значимость коэффициента регрессии и проведем его интервальную оценку.
Значимость коэффициента b1 определим с помощью t-критерия Стьюдента (табличные значения критерия приведены в Приложении 4). Рассчитаем опытное значение критерия:
При этом среднеквадратическое отклонение коэффициента b1 найдем по формуле:
,
где остаточное среднеквадратическое отклонение найдем:
Поскольку , то и коэффициент b1, как и все уравнение регрессии, является значимым.
Таким образом, можно считать, что предполагаемая зависимость стоимости квартиры от ее размера подтвердилась и статистически установлена.
Проверим значимость выбранного коэффициента с помощью критерия Фишера:
Наблюдаемое значение F–критерия превышает табличное: 34,083 > 4,75, т.е. выполнено неравенство , а значит, в 95 % случаев уравнение регрессии статистически значимо и отражает существенную зависимость между размером цены квартиры от ее жилой площади. Уравнение можно признать надежным и значимым, доказывающим наличие исследуемой зависимости.
Доверительный интервал для рассчитывается по формуле:
При выбранной надежности g=0,95 получим:
, откуда .
Таким образом, с надежностью 95% можно утверждать, что истинное значение параметра b1 будет заключено в пределах от 0,3227 до 0,7193.
7. Рассчитаем прогнозное значение результата, если прогнозное значение фактора увеличится на 10% от среднего уровня.
Полученные оценки уравнения регрессии позволяют использовать его для прогноза численных значений стоимости жилой площади. Но как уже говорилось, точность модели невысока.
В случае увеличения фактора на 10 % от своего среднего значения размер данного увеличения составит:
Прогнозное значение фактора при этом составит:
Точечный прогноз:
Т.е. по модели предсказываем, что если жилая площадь квартиры, увеличившись на 10 % от своего среднего значения, составит 42,12 условных единиц, то ожидаемая (прогнозная) величина ее стоимости составит 31,25 условных единиц.
Доверительный интервал для среднего размера стоимости квартиры при условии, что ее жилая площадь составляет х = 42,12 условных единиц с надежностью g=0,95:
где стандартная ошибка для средних значений:
Т.е. средний размер стоимости жилой площади размером 42,1223 условные единицы находится в границах от 27,2719 до 35,2375 условные единицы.
Доверительный интервал для индивидуальных значений размера стоимости квартир с жилой площадью 42,1223 условные единицы с надежностью g=0,95:
,
где стандартная ошибка для индивидуальных значений:
Таким образом, если размер жилой площади будет находиться на уровне 42,1223 условные единицы, то возможный размер ее стоимости в 95% случаев может находиться внутри интервала от 16.046 до 46.463 условные единицы. Этот интервал определяет границы, за пределами которых могут оказаться не более 5% значений стоимости квартир, которые могли быть зафиксированы при размере их жилой площади в 42,1223 условные единицы.
Выводы, сделанные ранее подтвердились. Интервальный прогноз не отличается высокой точностью, но вполне пригоден для практического использования.
8. Полученные результаты позволяют сделать следующие выводы:
Статистически значимый коэффициент регрессии b1 и коэффициент корреляции rух свидетельствуют о наличии сильной зависимости стоимости квартиры от размера ее жилой площади. Можно считать, что наличие этой зависимости статистически доказано, направление и общая тенденция отражена уравнением регрессии верно и согласуется с экономической теорией. Высокое значение коэффициента детерминации R2 указывает, что на формирование стоимости квартир существенное влияние оказывает именно размер их жилой площади и в значительно меньшей мере (порядка 26 %) - другие экономические факторы.
С другой стороны, относительная ошибка аппроксимации свидетельствует, что модель подобрана не точно: в среднем теоретические (смоделированные данные) отличаются от фактических на 19,8 %. В целом применение полученного уравнения регрессии возможно в случае повышения его прогностической силы и практической ценности за счет увеличения объема выборки.
Задача 2
В исходной таблице (вариант 8) представлены статистические данные о различных параметрах уровня жизни населения в 2004 г.:
№ | Страны | Х1 | Х3 | Х6 | Х8 | Х9 | У |
1 | Россия | 55 | 30 | 20,4 | 28 | 124 | 84,98 |
2 | Австралия | 100 | 47 | 71,4 | 121 | 87 | 30,56 |
3 | Австрия | 93 | 37 | 78,7 | 146 | 74 | 38,42 |
4 | Азербайджан | 20 | 12,4 | 12,1 | 52 | 141 | 60,34 |
5 | Армения | 20 | 4,3 | 10,9 | 72 | 134 | 60,22 |
6 | Белоруссия | 72 | 28 | 20,4 | 38 | 120 | 60,79 |
7 | Бельгия | 85 | 48 | 79,7 | 83 | 72 | 29,82 |
8 | Болгария | 65 | 18 | 17,3 | 92 | 156 | 70,57 |
9 | Великобритания | 67 | 39 | 69,7 | 91 | 91 | 34,51 |
10 | Венгрия | 73 | 40 | 24,5 | 73 | 106 | 64,73 |
11 | Германия | 88 | 35 | 76,2 | 138 | 73 | 36,63 |
12 | Греция | 83 | 24 | 44,4 | 99 | 108 | 32,84 |
13 | Грузия | 21 | 36 | 11,3 | 55 | 140 | 62,64 |
14 | Дания | 98 | 38 | 79,2 | 89 | 77 | 34,07 |
15 | Ирландия | 99 | 31 | 57 | 87 | 102 | 39,27 |
16 | Испания | 89 | 26 | 54,8 | 103 | 72 | 28,46 |
17 | Италия | 84 | 27 | 72,1 | 169 | 118 | 30,27 |
18 | Казахстан | 61 | 19,2 | 13,4 | 10 | 191 | 69,04 |
19 | Канада | 98 | 44 | 79,9 | 123 | 77 | 25,42 |
20 | Киргизия | 46 | 23,5 | 11,2 | 20 | 134 | 53,13 |
21 | Нидерланды | 86 | 37 | 72,4 | 176 | 59 | 28,00 |
22 | Португалия | 73 | 27 | 48,6 | 150 | 83 | 38,79 |
23 | США | 115 | 29 | 100 | 99 | 103 | 32,04 |
24 | Финляндия | 62 | 36 | 63,9 | 82 | 94 | 38,58 |
25 | Франция | 91 | 36 | 77,5 | 84 | 85 | 18,51 |
26 | Чехия | 82 | 45 | 34,7 | 65 | 114 | 57,62 |
27 | Япония | 40 | 20 | 83,5 | 60 | 119 | 20,80 |
∑ |
| 1966 | 837,4 | 1385,2 | 2405 | 2854 | 1181,05 |
| 72,81 | 31,01 | 51,3 | 89,07 | 105,7 | 43,74 |
Х1 - потребление мяса и мясопродуктов на душу населения (кг),
Х3 - потребление сахара на душу населения (кг),
Х6 - оценка ВВП по паритету покупательной способности в 1994 г. на душу населения (в % к США),
Х8 - потребление фруктов и ягод на душу населения (кг),
Х9 - потребление хлебных продуктов на душу населения (кг),
У – смертность населения по причине болезни органов кровообращения на 100000 населения.
Требуется:
1) Рассчитать параметры линейного уравнения множественной регрессии.
2) Определить сравнительную оценку влияния факторов на результативный показатель с помощью коэффициентов эластичности.
3) Оценить статистическую значимость параметров регрессионной модели с помощью t-критерия. Адекватность модели проверить с помощью F-критерия.
4) Оценить качество построенного уравнения с помощью средней ошибки аппроксимации.
5) Используя метод многошагового регрессионного анализа, построить регрессионную модель только со значимыми факторами и оценить ее параметры.
6) Определить прогнозное значение результата, если прогнозные значения факторов составляют 80 % от их максимальных значений.
7) Рассчитать ошибки и доверительный интервал прогноза для уровня значимости и .
8) Сделать выводы по полученным результатам.
Решение:
... , что найденный вариант является наилучшим. В современных условиях даже не значительные ошибки могут привести к огромным потерям. В связи с этим возникла необходимость привлечения к анализу и синтезу экономических систем оптимизационных экономико-математических методов и ЭВМ, что создает основу для принятия научно обоснованных решений. Такие методы объединяют в одну группу под общим названием « ...
... - Социальное развитие – 107,3 тыс. грн. - Материальное поощрение – 422,8 тыс. грн. - Другие цели – 51,4 тыс. грн. Вывод Анализ хозяйственной деятельности института позволяет сделать следующие выводы: Институт ЮжНИИгипрогаз является акционерным обществом открытого типа уставный фонд которого сформирован за счет выпуска акций суммарной номинальной стоимостью 1628,7 тыс. грн.; Институт ...
... до 30,4 ц. Значение стандартной ошибки апраксимаци значительно, поэтому прогноз будет носить условный характер. Заключение Статистико-экономический анализ удоя молока от одной коровы по 30 хозяйствам подтвердил сложную экономическую ситуацию, сложившуюся в России в молочном животноводстве. Низкая продуктивность животных, большие затраты на средства производства, топлива и энергию приводят к ...
... между варьирующими признаками, определению неизвестных причинных связей и оценке факторов оказывающих наибольшее влияние на результативный признак. Задачи регрессионного анализа лежат в сфере установления формы зависимости, определения функции регрессии, использования уравнения для оценки неизвестных значении зависимой переменной. Решение названных задач опирается на соответствующие приемы, ...
0 комментариев