2.3. Теорема Дирихле.


Выше мы нашли оценку погрешности, возникающей при замене любого действительного числа рациональными дробями определенного типа, а именно: подходящими дробями.

А сейчас рассмотрим некоторые сравнительно простые результаты, показывающие как обстоит дело с приближением действительных чисел рациональными числами, не предрешая заранее, что эти рациональные числа будут подходящими дробями.

Пусть – произвольное действительное число. Из теории десятичных дробей следует существование рационального числа такого, что . поставим вопрос о возможности таких приближений рациональными числами , при которых точность приближения будет оценена не величиной , а величиной, в раз меньшей, то есть вопрос о нахождении рациональных чисел таких, что , где – любое заранее положительное число.

Например, можно поставить задачу нахождения такого рационального приближения к , чтобы точность приближения была в 1000 или в 1000000 раз лучшей, чем величина, обратная знаменателю. Это соответствует выбору =1000 или =1000000. оказывается, что как бы велико ни было , можно найти рациональную дробь , приближающую с точностью до , причем и это является самым интересным, дробь мы можем выбрать так, что .

Теорема Дирихле: Пусть и – действительные числа; существует несократимая дробь , для которой ,

(или: существует такая пара взаимно простых целых чисел a и b, что , ).

Доказательство: Теорему легко доказать с помощью аппарата цепных дробей.

Пусть подходящая дробь числа ; выберем наибольший из знаменателей , не превышающий , то есть наибольшее k, чтобы и положим =. Рассмотрим два случая:

не является последним знаменателем, то есть существует такое, что . Тогда при a= и b= имеем:

2) – знаменатель последней подходящей дроби разложения , то есть =. Тогда при a=, b=, имеем:

.

Теорема доказана.

Сам Дирихле дал другое доказательство, использовав в нем принцип, который носит теперь имя Дирихле: при распределении N объектов между N-1 ящиками хотя бы в одном ящике должно находиться 2 объекта. Приведем это доказательство.

Пусть , рассмотрим совокупность t+2 чисел, состоящую из 1 и значений дробных частей для x=0, 1, …, t (причем =-, ). Очевидно, каждое из чисел этой совокупности принадлежит точно одному из t+1 промежутков , , …, , из которых первые t являются полусегментами, а последний сегментом.


————————————————————————————————

0 1


Так как чисел у нас t+2, то (согласно принципу Дирихле) обязательно найдется такой промежуток, который содержит 2 числа из совокупности и 1. Разность этих двух чисел не превосходит длину содержащего их промежутка, то есть .

Если такими числами являются и , то . Пусть и , . Так как , то , ).

Если и 1 принадлежат одному промежутку, то

Пусть в таком случае , . Очевидно, и здесь , так что , ).

Теорема доказана.

Рассмотрим пример применения теоремы Дирихле.

Найти рациональное приближение к с точностью до .

Решение: Разложим в цепную дробь.

=2 -21, то , то есть если , то .

Доказательство: Рассмотрим случай, когда (иначе теряет смысл). Тогда всегда лежит между любыми двумя последующими подходящими дробями так, что для k>1 всегда лежит между и , причем ближе к , чем к . Поэтому, если ближе к , чем , то оно находится между и . В случае четного можно записать (в случае нечетного k доказательство существенно не меняется), откуда , или ,

, откуда, домножая неравенство на , получаем . Так как – число целое и положительное, то из предыдущего равенства следует , что и требовалось доказать.

Попутно мы установили, что любая рациональная дробь , принадлежащая интервалу , k>1, имеет знаменатель . Для k=1 теорема неверна:

может оказаться ближе к , чем его подходящая дробь , хотя .

Доказанная теорема приводит нас к следующему определению:

Рациональную дробь называют наилучшим приближением действительного , если любая более близкая к рациональная дробь имеет больший знаменатель, чем , то есть если из следует d>b.

Таким образом, подходящие дроби являются наилучшими приближениями, например, Архимедово число для является наилучшим приближением.

Ранее мы доказали, что для оценки погрешности , возникающей при замене любого действительного его подходящей дробью , можно пользоваться неравенством . Выразим этот результат по отношению к действительному иррациональному , имеющим бесконечное множество подходящих дробей, следующим образом: для любого действительного иррационального существует при c=1 бесконечное множество несократимых дробей таких, что (1).

Такими дробями являются, например, все подходящие дроби для .

Возникает вопрос: При каких меньших значениях c (чем c=1) существует для любого действительного иррационального бесконечное множество (несократимых) рациональных приближений , погрешность которых .


Теорема: Для любого действительного иррационального числа существует при бесконечное множество несократимых рациональных дробей таких, что (). Такими рациональными дробями могут быть только подходящие дроби к .

Доказательство: Докажем первую часть теоремы. Рассмотрим две последующие подходящие дроби к и . Допустим, что ни одна из этих дробей не удовлетворяет неравенству (). Тогда имеем: , . Отсюда .

Но так как лежит между и , то , вследствие чего , или , а это для k>1 невозможно. Мы пришли к противоречию, значит наше допущение неверно, а верно то, что требуется доказать.

Для доказательства второй части теоремы докажем достаточный признак подходящей дроби к действительному числу : если , где Q>0, несократимая дробь и для действительного имеет место неравенство (), то является подходящей дробью к .

Доказательство: Покажем, что если =()= ( удовлетворяет условию теоремы) подходящая дробь к , то соответствующее остаточное число разложения данного в цепную дробь окажется >1. Действительно, , откуда следует , так как .

Теорема доказана полностью.

Достаточный признак подходящей дроби не является ее необходимым признаком; могут существовать подходящие дроби для , которые ему не удовлетворяют.

Крайнюю возможность уменьшения c в указанном раньше смысле выражает теорема Гурвица-Бореля:

Теорема: Для любого действительного иррационального числа существует при бесконечное множество несократимых рациональных дробей таких, что выполняется неравенство (1), то есть неравенство

, ()

если же , то существуют такие действительные иррациональные , для которых неравенство (1) имеет не более конечного числа рациональных решений .

Доказательство: Докажем первую часть. Разложим в цепную дробь. Мы докажем, что из трех любых соседних подходящих дробей , i=k, k+1, k+2 по крайней мере одна удовлетворяет условию . Доказательство этого утверждения будем вести методом от противного. Предположим, что для каких-либо трех соседних подходящих дробей выполняются неравенства:

, , (2)

и расположены по разные стороны от и поэтому при нечетном k из (2) следует

,

а при четном: , так что и в том, и в другом случае имеем:

, или, умножая на и перенося все члены в одну сторону , то есть , , или, поскольку и целые, . (3)

Так как и также расположены по разные стороны от , из (2) аналогично получаем: . (4)

Пользуясь еще тем, что из (3) и (4) получаем:

.

Предположение, что выполнены все три неравенства (2), привело нас к противоречию, поэтому по крайней мере для одной из трех подходящих дробей , , , взятой в качестве , должно выполняться неравенство ().

Придавая k различные значения, получим бесконечное множество дробей, удовлетворяющих неравенству ().

Докажем вторую часть.

Предположим, что при , неравенство (1) удовлетворяется для бесконечного множества рациональных чисел . Тогда для каждой такой дроби неравенства , откуда, подставляя значение , получаем , а возводя в квадрат, получаем: . Так как , то при достаточно большом Q будем иметь: и, следовательно, целое число , =, что при целых P и Q не может иметь места. Полученное противоречие показывает, что неравенство (1) может иметь место только для конечного числа рациональных чисел . Теорема доказана полностью.

Эта теорема была опубликована Гурвицем в 1891 году. Тот факт, что из трех соседних подходящих дробей по крайней мере одна даст приближение вида , был доказан Борелем в 1903 году.

Последним теоремам можно дать и другое очень важное истолкование.

Рассмотрим для этого уравнение , где – любое действительное иррациональное число. Исключая тривиальное решение x=y=0, это уравнение не может иметь решение в целых числах. Однако можно поставить задачу о приближенном его решении в целых числах, то есть о нахождении таких пар чисел x(x>0) и y, чтобы:

или .

Теорема Гурвица-Бореля показывает, что для всегда существует бесконечное множество таких пар; если же , то существуют такие действительные числа, для которых таких пар имеется лишь конечное множество.

Новая точка зрения получает в содружестве с методом Дирихле весьма значительное применение в теории диофантовых приближений.


§ 3. Квадратические иррациональности и периодические цепные дроби.


Рациональные числа представляют собой корни уравнений первой степени вида с целыми коэффициентами.

Во множестве иррациональных чисел наиболее простыми являются те иррациональности, которые являются корнями квадратных уравнений с целыми коэффициентами; такие числа будем называть квадратическими иррациональностями.

Число называется квадратической иррациональностью, если – иррациональный корень некоторого уравнения (1) с целыми коэффициентами, не равными одновременно нулю.

При таком , очевидно, будет a0, c0. Коэффициенты a, b, c уравнения (1), очевидно, можно взять взаимно простыми; в этом случае дискриминант этого уравнения будем называть также дискриминантом . Корни уравнения (1) равны и , так что любую квадратическую иррациональность можно представить в виде , где P, Q – целые, а D (D>1) – целое неквадратное число.

Второй корень уравнения (1) будем называть иррациональностью, сопряженной с .

В определении квадратической иррациональности особенно важно обратить внимание на то, что речь идет о квадратных уравнениях с целыми коэффициентами. Любое является корнем квадратного уравнения и даже уравнения первой степени, например уравнений , x-=0.


Примеры:

– квадратическая иррациональность, так как является иррациональным корнем уравнения .

– квадратическая иррациональность, так как представляет собой иррациональный корень уравнения . Здесь P=–1, Q=–3, D=5.

не является квадратической иррациональностью.

Действительно, корень любого квадратного уравнения с целыми коэффициентами имеет вид , где P, Q, D, причем D>1. Если бы мы имели =, то, возводя это равенство в куб, мы получили бы, что – рациональное число, а следовательно, рациональным являлся бы и , а это не так.

Теорема: Всякая периодическая непрерывная дробь изображает квадратическую иррациональность.

Доказательство: Пусть – смешанная периодическая цепная дробь, то есть , где – чисто периодическая цепная дробь.

Обозначим подходящие дроби к и соответственно через и .

Так как , то, согласно формуле (5) из 1.1 этой главы, . Выполнив необходимые преобразования, получаем: .

Из этой формулы видно, что удовлетворяет квадратному уравнению с целыми коэффициентами. Кроме того, - число иррациональное, так как оно представляет бесконечную непрерывную дробь. Таким образом, - квадратическая иррациональность. Но по той же формуле , поэтому и является, очевидно, квадратической иррациональностью, что и требовалось доказать.

Докажем обратную теорему, которая носит имя Лагранжа.

Теорема Лагранжа: Всякая действительная квадратическая иррациональность изображается периодической непрерывной дробью.

Доказательство: Пусть – действительный иррациональный корень квадратного уравнения (1) с целыми коэффициентами a, b, c.

При разложении в непрерывную дробь получаем (2), где – остаток порядка k+1.

Подставляя выражение из (2) в (1), получаем

(3), где

(4)

Отсюда, во-первых, видно, что (5), во-вторых, можно непосредственным вычислением установить, что (6).

Таким образом, дискриминант уравнения (3) такой же, как и дискриминант уравнения (1), откуда следует, что он от k не зависит.

Идея доказательства в дальнейшем заключается в том, чтобы показать, что при данном коэффициенты , , ограничены по модулю.

Если этот факт на самом деле имел бы место, то это означало бы, что коэффициенты, будучи целыми числами, могут принимать только конечное число различных значений. Вместе с тем и число возможных уравнений (3) было бы конечным, хотя k пробегает бесконечное множество значений. Но в таком случае и остатки (которые определяются из (3)), число которых бесконечно, могли бы принять только конечное число различных значений. Поэтому должны были бы существовать остатки с одинаковыми значениями, а это уже означает, что непрерывная дробь – периодическая.

Итак, докажем, что , и ограничены по абсолютной величине. Достаточно сделать это для , так как в силу соотношения (5), из ограниченности уже как следствие вытекает ограниченность , а в силу (6) – ограниченность .

Как известно из свойств подходящих дробей, или , где , откуда .

Поэтому из первого равенства (4) имеем

Так как , то

,

то есть и , а это и доказывает ограниченность .

Этим и завершается доказательство теоремы Лагранжа.

Отметим без доказательства следующие свойства разложений квадратических иррациональностей:

при разложении квадратного корня и целого положительного числа, не являющегося полным квадратом, период начинается со второго звена;

чисто периодическая цепная дробь получается тогда и только тогда, когда квадратическая иррациональность больше 1, а сопряженная иррациональность лежит в интервале (-1; 0) (это свойство было доказано Э. Галуа в 1828 году. Он доказал также, что в случае чисто периодического разложения сопряженная квадратическая иррациональность имеет те же элементы, но расположенные в обратном порядке).


Примеры:

Составить уравнение, один из корней которого разлагается в периодическую цепную дробь x и найти соответствующую иррациональность x=((2, 6, 1)).

Решение: x=(2, 6, 1, x).

Составляем схему вычисления числителей и знаменателей подходящих дробей.


2

6

1

x

1

2

13

15

15x+13

0

1

6

7

7x+6

Итак, , откуда получаем: .

Положительное решение этого уравнения дает искомую периодическую дробь.

((2, 6, 1))= - квадратическая иррациональность. Заметим, что >1, а – иррациональность, сопряженная с x – лежит в интервале (-1; 0).


Составить уравнение, один из корней которого разлагается в периодическую цепную дробь x=(3, (2, 1)) и найти соответствующую иррациональность.

Решение x=(3, y), где y=(2, 1, y). Составляем схему для вычисления числителей и знаменателей подходящих дробей y:


2

1

y

1

2

3

3y+2

0

1

1

y+1

Следовательно, , . Так как y>0, то мы должны взять положительный корень этого уравнения . Поэтому для x имеем . Таким образом, искомая дробь (3, (2, 1))=. Для соответствующего квадратного уравнения имеем , откуда получаем: .


§4. Представление действительных чисел цепными дробями общего вида.


Рассмотренные до сих пор правильные бесконечные и конечные цепные дроби являются частным случаем бесокнечных и конечных цепных дробей общего вида:

(1),

когда в них принимается, что все , , а остальные .

В общем случае элементы цепной дроби и , k>1 могут принимать произвольные, отличные от 0 рациональные значения, а может также быть равно нулю.

При помощи цепных дробей общего вида одно и то же рациональное число можно представить различными способами. Например, .

В цепной дроби (1), которую записывают также иначе, например, () или () числа и (k=2, 3, …) называют звеньями, и – членами k–го звена, из них – частным числителем, а – частным знаменателем.

Чтобы получить разложение рационального числа в конечную цепную дробь (1), можно все и , за исключением одного, выбрать произвольно.

Можно, например, найти разложение ; для этого следует положить . Можно цепную дробь преобразовать так, чтобы все были равны 1, то есть, чтобы (1) приняло вид (2).

Так, например, . Дроби вида (2) называют обыкновенными цепными дробями, а , , …, – их неполными частными. Правильные цепные дроби можно поэтому определить как обыкновенные цепные дроби с целыми положительными неполными частными, начиная с , причем может быть любым целым числом.

Правильные цепные дроби являются наиболее простыми и наиболее изученными среди цепных дробей общего вида, однако и другие цепные дроби играют большую роль и имеют важные применения, например, в приближенном анализе, где при их помощи без сложных выкладок получают дробно-рациональные приближения функций.

Рассмотрим обзорно некоторые свойства цепных дробей общего вида.

Происхождение таких цепных дробей связано с обобщенным алгоритмом Евклида.

Если мы имеем систему равенств , , , … с произвольными рациональными числами, то при b, c, d0, из них следуют равенства , , , …, так что, подставляя по цепочке, получаем .

k-я подходящая дробь определяется для по формуле при условии, что , , , .

Пользуясь ею, найдем, например, подходящие дроби для разложения . Имеем =, , , , , . Заметим, что получаемые в процессе рекуррентного вычисления подходящие дроби могут быть сократимыми, но сокращать их можно лишь при определенных условиях.

Свойства подходящих дробей цепных дробей общего вида с положительными элементами и правильных цепных дробей вполне аналогичны.

Бесконечная цепная дробь (1) называется сходящейся, если существует конечный предел ; в таком случае принимается за значение этой дроби. Не всегда общие бесконечные цепные дроби являются сходящимися, даже тогда, когда они имеют лишь положительные элементы.

Существует ряд признаков сходимости цепных дробей:

Пусть дана непрерывная дробь вида

, где ,

Пусть , все члены последовательностей , действительные числа и для всех , начиная с некоторого. Если для таких k выполняется неравенство , то цепная дробь сходится.

Пусть и все члены последовательности , начиная с k=2 положительны. Тогда цепная дробь сходится тогда и только тогда, когда ряд расходится (теорема Зейделя).

Интересной особенностью цепных дробей общего вида является то, что даже рациональные числа могут ими разлагаться в бесконечные цепные дроби. Например, имеется разложение

=, , , , , …

0,3; 0,42; 0,45; 0,467; …

Примечательно то, что квадратические иррациональности разлагаются и в непериодические цепные дроби общего вида.

Например, имеется разложение

=, , , , , , , …

1; 1,5; 1,38; 1,44; 1,40; …

Но самое интересное и важное это то, что в то время как до настоящего времени неизвестно разложение в правильную цепную дробь ни одной алгебраической иррациональности степени выше второй (другими словами, неизвестны общие свойства неполных частных таких разложений, разложения сами по себе со сколь угодной точностью можно практически найти), при помощи общих цепных дробей такие разложения находятся довольно легко. Отметим, например, некоторые разложения и соответствующие подходящие дроби для :

=, , , , , , …

1,33; 1,22; 1,284.


=, , , , , , …

1,17; 1,25; 1,258; 1,2596; …

Приведем еще несколько примеров разложений других иррациональностей в цепные дроби общего вида:

=, , , , , , …

Эта цепная дробь для была найдена еще более 300 лет назад английским математиком Брункером.

=, , , , , , ,

В 1776 году И. Ламберт нашел разложение tg x в цепную дробь: tg x=

А. Лежандр в предположении, что эта цепная дробь сходится, показал, что ее значение для рациональных значений x иррационально. Принято считать, что тем самым была доказана иррациональность числа .

Л. Эйлер нашел, что: =(1; 6, 10, 14, …). Также Эйлер нашел разложение в цепную дробь числа e. e=(2; 1, 2, 1, 1, 4, 1, 1, 6, …), то есть элементы разложения e в цепную дробь имеют вид:

, ,

Швейцарский математик Иоганн Генрих Ламберт (1728-1777) нашел разложение числа в виде цепной дроби.

Первые 25 неполные частные разложения числа в правильную цепную дробь есть числа:

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1.


Решение задач

Записать в виде конечной цепной дроби

a) ; b) ; c) 2,98976; d)

Решение:

=(0, 2, 15);

=(3, 7, 15, 1, 292);

2,98976==(2, 1, 96, 1, 1, 1, 10);

=–(2, 1, 30, 2)=(-2, 1, 30, 2)


Разложить простую дробь в цепную дробь и найти ее подходящие дроби.

a) ; b) ; c) ; d)


Решение:

a) =(3, 2, 1, 24);

Находим подходящие дроби:



3

2

1

24

1

3

7

10

247

0

1

2

3

74

=; =; =

b) =(3, 3, 33);



3

3

33

1

3

10

333

0

1

3

100

=; =

c) ==(3, 7, 15, 1, 292);



3

7

15

1

292

1

3

22

333

355

103993

0

1

7

106

113

33102

=; =; =; =;

d) =(0, 2, 2, 3);



0

2

2

3

1

0

1

2

7

0

1

2

5

17

=; =; =.



Информация о работе «Цепные дроби»
Раздел: Математика
Количество знаков с пробелами: 53043
Количество таблиц: 21
Количество изображений: 1149

Похожие работы

Скачать
72202
18
8

... из которых мультипликативна по лемме 2 пункта 13. Значит, ( a ) - мультипликативна.   Следствие 3. . Доказательство. Пусть . Тогда, по лемме 1 пункта 13 имеем: . 5 Китайская теорема об остатках В этом пункте детально рассмотрим только сравнения первой степени вида ax b(mod m), оставив более высокие степени на съедение следующим ...

Скачать
17395
1
12

... так делаем, пока не закончатся элементы цепной дроби. Пример. Цепная дробь: [2,3,4,5] Рациональная дробь: 157/68 Тесты. 1.Некорректные данные 2.Корректные данные Заключение Разработана программа CalcKurs, выполняющая следующие функции: 1.формирование заданного подмножества натурального ряда с помощью общего делителя; 2.факторизация числа с опциями; 3.нахождение НОД и НОК ...

Скачать
17639
1
13

... ; q: char; begin writeln ('Дискретная математика'); writeln ('Курсовая работа, группа 03-119, каф308'); writeln ('выполнил: Тузов И.И. '); writeln ('руководитель: Гридин А.Н. '); writeln; writeln ('Калькулятор с функциями, описанными ниже'); writeln; Writeln ('Нажмите Enter'); readln; clrscr; repeat writeln ('Какую выполнить операцию? '); writeln; writeln ('1-вычисление мн-ва N- ...

Скачать
24303
27
7

... что если уравнение (25) имеет хотя бы одно решение, то оно имеет их бесчисленное множество. Нельзя, конечно, утверждать, что формулами (31) даются все решения уравнения (25). В теории алгебраических чисел доказывается, что все решения уравнения (25) в целых числах можно получить, взяв некоторое конечное и определенное зависящее от  и  число решений этого уравнения и размножив их с помощью формул ...

0 комментариев


Наверх