1.2. Особенности свойств полимерных материалов
Особенности строения полимеров оказывают большое влияние на их физико-механические и химические свойства. Вследствие высокой молекулярной массы они не способны переходить в газообразное состояние, при нагревании образовывать низковязкие жидкости, а некоторые, обладающие термостабильной пространственной структурой, даже размягчаться. С повышением молекулярной массы уменьшается растворимость. При молекулярной массе (300 —400)*103 и низкой полярности полимеры растворимы в растворителях, процесс протекает медленно: через стадию набухания с образованием очень вязких растворов. Если молекулярная масса очень велика или присутствуют высокополярные группы, то полимер становится нерастворимым ни в одном из органических растворителей.
Полидисперсность, присущая полимерам, приводит к значительному разбросу показателей при определении физико-механических свойств полимерных материалов. Механические свойства полимеров (упругие, прочностные) зависят от их структуры, физического состояния, температуры и т. д. Полимеры могут находиться в трех физических состояниях: в стеклообразном, высокоэластическом и вязкотекучем.
Стеклообразное состояние — твердое, аморфное (атомы, входящие в состав молекулярной цепи, совершают колебательное движение около положения равновесия; движения звеньев и перемещения макромолекул не происходит).
Высокоэластическое состояние присуще только высокополимерам, характеризуется способностью материала к большим обратимым изменениям формы при небольших нагрузках (колеблются звенья, и макромолекула приобретает способность изгибаться).
Вязкотекучее состояние напоминает жидкое состояние, но отличается от него очень большой вязкостью (подвижна вся макромолекула). С изменением температуры линейный или разветвленный полимер может переходить из одного физического состояния в другое.
Полимеры с пространственной структурой находятся только в стеклообразном состоянии. Редкосетчатая структура позволяет получать полимеры в стеклообразном и высокоэластическом состояниях. Различные физические состояния полимера обнаруживаются при изменении его деформации с температурой. Графическая зависимость деформации, развивающейся за определенное время при заданном напряжении от температуры, называется термомеханической кривой.. Средние температуры переходных областей называются температурами перехода. Так, температура перехода из стеклообразного в высокоэластическое состояние (и обратно) называется температурой стеклования (tc); температура перехода из высокоэластического состояния в вязкотекучем (и обратно) — температурой текучести (tт)-
Точка txp, лежащая ниже точки tc, является температурой хрупкости. При температуре ниже txp полимер становится хрупким, т. е. разрушается при очень малой величине деформации. Разрушение происходит в результате разрыва химических связей в макромолекуле (например, для полиметилметакрилата tc=100°C, txp=+10"C; для полистирола tс=100сС и txp= 9O°C; для поливинилхлорида tc = 81°C, txp = -90°С; для резины на основе натурального каучука tс = — 62°С, txp = — 80°С). С повышением температуры увеличивается энергия теплового движения молекул, и температура становится достаточной для проявления гибкости молекул. Небольшие напряжения вызывают перемещение отдельных сегментов макромолекул и их ориентацию в направлении действующей силы. После снятия нагрузки молекулы в результате действия межмолекулярных сил принимают первоначальную равновесную форму. Высокоэластическое состояние характеризуется значительными обратимыми деформациями (сотни процентов). В области, соответствующей этому состоянию, развиваются упругая и высокоэластическая деформации. Около точки tT кроме упругой и высокоэластической деформации возникает и пластическая.
Кристаллические полимеры ниже температуры плавления — кристаллизации tк - являются твердыми, но имеют различную жесткость вследствие наличия аморфной части, которая может находиться в различных состояниях. При tK кристаллическая часть плавится, и термомеханическая кривая почти скачкообразно, и соответствует высокоэластической деформации, как у некристаллического полимера.
Узлы сетки редкосетчатого полимера препятствуют относительному перемещению полимерных цепей. .В связи с этим при повышении температуры вязкого течения не наступает, расширяется высокоэластическая область и ее верхней границей становится tx (химическое разложение полимера).
Рассмотренные температурные переходы (tc и tт) являются одними из основных характеристик полимеров и имеют большое значение. Например, при использовании волокон, пленок, лаков в промышленности, где необходима высокая прочность, лежащие в их основе полимеры должны находиться в стеклообразном состоянии. Резиновой промышленности необходимы высокоэластические полимеры, сохраняющие свои свойства в широком диапазоне температур. Процесс технологической переработки полимеров происходит в области вязкотекучего состояния.
Зависимость напряжения от деформации для линейных и сетчатых полимеров различна. Линейные полимеры в стеклообразном состоянии обладают некоторой подвижностью сегментов, поэтому полимеры не так хрупки, как неорганические вещества.
При действии больших напряжений в стеклообразных полимерах развиваются значительные деформации, которые по своей природе близки к высокоэластическим. Эти деформации были названы А. П. Александровым вынужденно-эластическими, а само явление — вынужденной эластичностью. Вынужденно-эластические деформации проявляются в интервале температур txp—tc, а при нагревании выше tc они обратимы, т. е. образец полностью восстанавливается до первоначального размера. Диаграмма растяжения стеклообразного полимера показана па рис.2.1. Область / является областью образования упругой деформации, а в области II происходит процесс высокоэластической деформации. Максимум на кривой соответствует условию dQ/dE = 0 и называется пределом вынужденной эластичности Qвын. Эл.- Ниже tхр полимер приобретает плотную структуру с прочными межмолекулярными связями, теряет все преимущества, обусловленные гибкостью цепей, и разрушается хрупко.
В интервале температур tc — tT, когда полимер находится в высокоэластическом состоянии, диаграмма напряжение — деформация имеет вид плавной S-образной кривой. Зависимость напряжения от деформации для аморфного термопласта (полиметилметакрилат, полистирол, поливинилхлорид и др.) при разных температурах и постоянной скорости растяжения дана на рис. 2.2.
2.1 2.2
Рис. 2.1. Диаграмма растяжения стеклообразного полимера
(Qвын.эл- предел вынужденной эластичности):
/ — область упругих деформаций;
Деформация
Деформация
//—область высокоэластической деформации
Рис. 2.2. Влияние температуры на характер кривых напряжение — деформация аморфного термопласта t1 < t2 < t3
Ориентационное упрочнение. Полимеры как в кристаллическом, так и в стеклообразном состоянии могут быть ориентированы. Процесс осуществляется при медленном растяжении полимеров, находящихся в высокоэластическом или вязкотекучем состоянии. Макромолекулы и элементы надмолекулярных структур ориентируются в силовом поле, приобретают упорядоченную структуру по сравнению с неориентированными. После того как достигнута желаемая степень ориентации, температура снижается ниже tс, и полученная структура фиксируется.
В процессе ориентации возрастает межмолекулярное взаимодействие, что приводит к повышению tc, снижению tхр и особенно к повышению механической прочности. Свойства материала получаются анизотропными. Различают одноосную ориентацию, применяемую для получения волокон, пленок, труб, и многоосную, производимую одновременно в нескольких направлениях (например, в процессе получения пленок).
Прочность при разрыве в направлении ориентации увеличивается в 2-5 раз, в перпендикулярном направлении прочность уменьшается и составляет 30-50% прочности исходного материала. Модуль упругости в направлении одноосной ориентации увеличивается примерно в 2 раза. Высокая прочность сочетается с достаточной упругостью, что характерно только для высокополимеров (звенья макромолекул могут обратимо перемещаться без разрушения материала).
Некоторые свойства ориентированных аморфных и кристаллических полимеров одинаковы, однако они различаются фазовым состоянием, поэтому с течением времени у кристаллических полимеров улучшается их структура, а аморфные ориентированные полимеры чаще всего в дальнейшем дезориентируются (особенно при нагреваний).
Релаксационные свойства полимеров. Механические свойства полимеров зависят от времени действия и скорости приложения нагрузок. Это обусловлено особенностями строения макромолекул. Под действием приложенных напряжений происходит как распрямление и раскручивание цепей (меняется их конформация), так и перемещение макромолекул, пачек и других надмолекулярных структур. Все это требует определенного времени, и установление равновесия (релаксация) достигается не сразу. Например, для полимера в высокоэластическом состоянии время релаксации при конформационных изменениях равно 10-4 - 10-6 с, а время релаксации при перемещении самих макромолекул и надмолекулярных структур очень велико и составляет сутки и месяцы. Примером может служить волокно, являющееся ориентированным полимером. В обычных условиях его молекулы очень долго не переходят в равновесное неориентированное состояние; поэтому такие процессы релаксации обычно не учитываются. Однако это волокно достаточно упруго, так как при растяжении и сокращении проявляются быстрые релаксационные процессы изменения конформаций. Кинетика релаксационного процесса выражается формулой :
∆X=(∆X)0e-(τ / τp)
где ∆х и (∆х)0 - отклонения измеряемой величины от равновесного значения в данный момент времени т и в начальный момент т = 0; т„ — время релаксации (для простых релаксирующих систем величина постоянная). При τ = τр величина ∆х = (∆х)0/е (т. е. за время релаксации ∆х уменьшается в 2,72 раза). По величине τ р обычно судят о скорости релаксационных процессов.
Для эластичных полимеров характерно явление гистерезиса. У этих материалов кривые зависимости деформации от напряжения при нагружении и разгрузке образца не совпадают (происходят релаксационные процессы). Релаксация деформации - это изменение относительного удлинения (или сжатия) образца при постоянном напряжении во времени. При приложении силы образец находится в неравновесном состоянии, и со временем начинается релаксация; через какое-то время деформация достигает равновесного значения (равновесие между а = const и тепловым движением). После снятия нагрузки образец начинает восстанавливать свою первоначальную форму (упругое последействие). Удлинение происходит в результате распрямления, раскручивания цепей (высокоэластической деформации) и перемещения макромолекул друг относительно друга (вязкого течения). Чем больше время испытания, тем больше вязкое течение. .Деформация в этом случае состоит из обратимой и необратимой. Эти медленно протекающие процессы изменения формы образца называют ползучестью.
Рис. 3. Влияние скорости (W) приложения нагрузки на характер кривых растяжения (W1 > W2 > W3)
Деформация
Релаксацией напряжения называется уменьшение напряжения до равновесного значения при условии неизменности деформации. С течением времени величина приложенного первоначального напряжения будет постепенно уменьшаться, так как в образце под действием теплового движения начнется самопроизвольная конформационная перестройка, а в линейном полимере будет происходить перемещение макромолекул. Для сетчатых полимеров соотношение указанных процессов будет зависеть от частоты сетки.
Для всех полимеров характерно повышение предела прочности с увеличением скорости нагружения (рис. 3). При этом уменьшается влияние неупругих деформаций. С уменьшением скорости нагружения влияние неупругих деформаций возрастает.
С. Н. Журковым разработана флуктуационная теория прочности полимеров, согласно которой разрыв полимерного материала под действием внешних сил является процессом, протекающим в зависимости от времени. Скорость его определяется соотношением энергии межмолекулярных связей и тепловых флуктуации. Разрыв происходит вследствие тепловых флуктуации, а растягивающее напряжение способствует флуктуационному процессу. Разрыв всегда происходит по химическим связям. Любое упрочнение структуры полимера приводит к более согласованному сопротивлению линейных молекул их разрыву, поэтому, например, при ориентации прочность материала повышается. При деформации полимерные материалы так же, как и металлы, обладают статической и динамической выносливостью.
Следовательно, чем выше напряжение или температура, тем меньше Долговечность.
Температурно-временная зависимость прочности для полимерных материалов выражена сильнее, чем для металлов, и имеет большое значение при оценке их свойств.
Старение полимеров. Под старением полимерных материалов понимается самопроизвольное необратимое изменение важнейших технических характеристик, происходящее в результате сложных химических и физических процессов, развивающихся в материале при эксплуатации и хранении. Причинами старения являются свет, теплота, кислород, озон и другие немеханические факторы. Старение ускоряется при многократных деформациях; менее существенно на старение влияет, влага. Различают старение тепловое, световое, озонное и атмосферное.
Испытание на старение проводится как в естественных условиях, так и искусственными ускоренными методами. Атмосферное старение проводится в различных климатических условиях в течение нескольких лет. Тепловое старение происходит при температуре на 50°С ниже температуры плавления (разложения) полимера. Продолжительность испытания определяется временем, необходимым для снижения основных показателей на 50% от исходных.
Сущность старения заключается в сложной цепной реакции, протекающей с образованием свободных радикалов (реже ионов), которая сопровождается деструкцией и структурированием полимера. Обычно старение является результатом окисления полимера атмосферным кислородом. Если преобладает деструкция, то полимер размягчается, выделяются летучие вещества (например, натуральный каучук); при структурировании повышаются твердость, хрупкость, наблюдается потеря эластичности (бутадиеновый каучук, полистирол). При высоких температурах (200 — 500°С и выше) происходит термическое разложение органических полимеров, причем пиролиз полимеров, сопровождаемый испарением летучих веществ, не является поверхностным явлением (как при простом испарении неполимерных веществ); во всем объеме образца образуются молекулы, способные испаряться.
Пластические массы
Пластмассами (пластиками) называют искусственные материалы, получаемые на основе органических полимерных связующих веществ. Эти материалы способны при нагревании размягчаться, становиться пластичными, и тогда под давлением им можно придать заданную форму, которая затем сохраняется. В зависимости от природы связующего переход отформованной массы в твердое состояние совершается или при дальнейшем ее нагревании, или при последующем охлаждении.
I. Состав, классификация и свойства пластмасс
Обязательным компонентом пластмассы является связующее вещество. В качестве связующих для большинства пластмасс используются синтетические смолы, реже применяются эфиры целлюлозы. Многие пластмассы, главным образом термопластичные, состоят из одного связующего вещества, например полиэтилен, органические стекла и др.
Другим важным компонентом пластмасс является наполнитель (порошкообразные, волокнистые и другие вещества как органического, так и неорганического происхождения). После пропитки наполнителя связующим получают полуфабрикат, который спрессовывается в монолитную массу. Наполнители повышают механическую прочность, снижают усадку при. прессовании и. придают материалу те или иные специфические свойства (фрикционные, антифрикционные и т. д.). Для повышения пластичности в полуфабрикат добавляют пластификаторы (органические вещества с высокой температурой кипения и низкой температурой замерзания, например олеиновую кислоту, стеарин, дибутилфталат и др.). Пластификатор сообщает пластмассе эластичность, облегчает ее обработку. Наконец, исходная композиция может содержать отвердители (различные амины) или катализаторы (перекисные соединения) процесса отверждения термореактивных связующих, ингибиторы, предохраняющие полуфабрикаты от их самопроизвольного отверждения, а также красители (минеральные пигменты и спиртовые растворы органических красок, служащие для декоративных целей).
Свойства пластмасс зависят от состава отдельных компонентов, их сочетания и количественного соотношения, что позволяет изменять характеристики пластиков в достаточно широких пределах.
По характеру связующего вещества пластмассы подразделяют на термопластичные (термопласты), получаемые на основе термопластичных полимеров, и термореактивные (реактопласты) — на основе термореактивных смол. Термопласты удобны для переработки в изделия, дают незначительную усадку при формовании (1-3%). Материал отличается большой упругостью, малой хрупкостью и способностью к ориентации. Обычно термопласты изготовляют без наполнителя. В последние годы стали применять термопласты с наполнителями в виде минеральных и синтетических волокон (органопласты).
Термореактивные полимеры после отверждения и перехода связующего в термостабильное состояние (пространственная структура) хрупки, часто дают большую усадку (до 10—15%) при их переработке, поэтому в их состав вводят усиливающие наполнители.
По виду наполнителя пластмассы делят на порошковые (пресс-порошки) с наполнителями в виде древесной муки, сульфитной целлюлозы, графита, талька, измельченных стекла, мрамора, асбеста, слюды, пропитанных связующими (часто их называют карболитами); волокнистые с наполнителями в виде очесов хлопка и льна (волокниты), стеклянного волокна (стекловолокниты), асбеста (асбоволокниты); слоистые, содержащие листовые наполнители (листы бумаги в гетинаксе, хлопчатобумажные, стеклянные, асбестовые ткани в текстолите, стеклотекстолите и асботекстолите, древесный шпон в древеснослоистых пластиках); крошкообразные (наполнитель в виде кусочков ткани или древесного шпона, пропитанных связующим); газонаполненные (наполнитель - воздух или нейтральные газы). В зависимости от структуры последние подразделяют на пенопласты и поропласты.
Современные композиционные материалы содержат в качестве наполнителей угольные и графитовые волокна (карбоволокниты); волокна бора (бороволокниты).
По применению пластмассы можно подразделить на силовые (конструкционные, фрикционные и антифрикционные, электроизоляционные) и несидовые (оптически прозрачные, химически стойкие, электроизоляционные, теплоизоляционные, декоративные, уплотнительные, вспомогательные). Однако это деление условно, так как одна и та же пластмасса может обладать разными свойствами: например, полиамиды применяют в качестве антифрикционных и электроизоляционных материалов и т. д.
Пластмассы по своим физико-механическим и технологическим свойствам являются наиболее прогрессивными и часто незаменимыми материалами для машиностроения.
Недостатками пластмасс являются невысокая теплостойкость, низкие модуль упругости и ударная вязкость по сравнению с металлами и сплавами, а для некоторых пластмасс склонность к старению.
... хозяйстве. 8.Как подразделяются латуни по технологическому признаку? 9.Перечислите основные виды бронз. 10.Как влияют легирующие элементы на механические свойства бронз? Раздел VII. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ Полимерные материалы и изделия. Изучая данный раздел, уясните, что в основе конструкционных материалов из пластических масс лежат полимеры. Свойства этих материалов определяются физико- ...
... прилипших частиц и собрать. По окончании работы выключить печи, привести в порядок рабочее место, оборудование, инструмент. Содержание отчета. Кратко описать процесс изготовления изделий из пластмассы. Привести эскиз изделия, схему процесса прессования и расчет манометрического давления. Обосновать выбор температуры, давления прессования и времени выдержки при прессовании. Контрольные вопросы и ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
... неорганических веществ в тонкоизмельченном состоянии. Детали и сборочные единицы широко применяют в электронике, автоматике, телемеханике, вычислительной технике, квантовой электронике и других отраслях приборостроения благодаря рядц замечательных свойств; морозо-и нагревостойкости, высокой механической прочности, твердости, малым диэлектрическим потерям, инертности к раду агрессивных сред, ...
0 комментариев