1. Карбоволокниты
Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей (наполнителей) в виде углеродных волокон (карбоволокон).
Углеродные волокна получают термообработкой органических волокон. В зависимости от температуры термообработки и содержащегося углерода волокна подразделяют на частично карбонизованные (900°С, 85-90%), карбонизованные (900-1500°С, 95-99%) и графитированные, (1500 — 3000°С, >99.%). Два последних типа имеют наибольшее значение.
В зависимости от формы исходного сырья углеродные волокна могут быть в виде нитей, жгутов, войлока, тканей; волокна можно перерабатывать на обычном текстильном оборудовании.
Практическое применение нашли вискозные кордные волокна (ВК) и полиакрилонитрильные (П АН-вол окна).
Свойства волокон зависят от термообработки, с увеличением температуры происходит образование гексагональных углеродных слоев, их рост и упорядочение. Структура волокон фибриллярная. Каждая фибрилла состоит из лентообразных микрофибрилл, разделенных узкими и длинными продольными порами.
В результате вытяжки достигается ориентация кристаллитов, что позволяет получать высокопрочные и высокомодульные углеродные волокна.
Обычные углеродные волокна имеют Ơв = 50 - 100 кгс/мм2 и Е = = 2000--7000 кгс/мм2; для высокопрочных и высокомодульных волокон Ơв >150 кгс/мм2 и Е> 15000 кгс/мм2. По удельным прочности (Ơ/р) и жесткости (Е/р) последние превосходят все жаростойкие волокнистые материалы.
Высокая энергия связи С — С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными, покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия), поэтому их подвергают травлению, аппретированию, вискеризации.
Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).
В качестве полимерных связующих применяют эпоксидные, фенолоформальдегидные. смолы, полиимиды и др.
Эпоксифенольные карбоволокниты КМУ-1л, упрочненный углеродной лентой, и КМУ-lл на жгуте, вискеризованном нитевидными кристаллами, могут длительно работать при температуре до 200°С.
Карбоволокниты КМУ-3 и КМУ-Зл получают на эпоксианилиноформальдегидном связущем, их можно эксплуатировать при температуре до 100°С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидного связущего можно применять при температуре до 300°С [43].
Карбоволокниты отличаются высокой статической и динамической выносливостью (рис. 215), сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически стойки. После воздействия на воздухе рентгеновского излучения Ơи и Εи почти не изменяются.
Теплопроводность углепластиков в 1,5-2 раза выше, чем у стеклопластиков. Они имеют следующие электрические свойства: р„ = 0,0024 4- 0,0034 Ом-см (вдоль волокон); Е=10 и tg δ = 0,01 (при частоте 1010 Гц).
Карбостекловолокниты содержат наряду с угольными стеклянные, волокна, что удешевляет материал.
Карбоволокниты с углеродной матрицей. Коксованные материалы получаются из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800—1500°С образуются карбонизованные, при 2500-3000°С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме -изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (1100°С и остаточном давлении 20 мм-рт. ст.) метан разлагается, и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.
Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.
Карбоволокнит на углеродной матрице типа КУП-ВМ: по значениям прочности и ударной вязкости в 5 —10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35-0,45), а износ мал (0,7-1 мкм на торможение).
Полимерные карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и др.
Карбоволокниты с углеродной матрицей применяют для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры, заменяя различные типы графитов.
... хозяйстве. 8.Как подразделяются латуни по технологическому признаку? 9.Перечислите основные виды бронз. 10.Как влияют легирующие элементы на механические свойства бронз? Раздел VII. НЕМЕТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ Полимерные материалы и изделия. Изучая данный раздел, уясните, что в основе конструкционных материалов из пластических масс лежат полимеры. Свойства этих материалов определяются физико- ...
... прилипших частиц и собрать. По окончании работы выключить печи, привести в порядок рабочее место, оборудование, инструмент. Содержание отчета. Кратко описать процесс изготовления изделий из пластмассы. Привести эскиз изделия, схему процесса прессования и расчет манометрического давления. Обосновать выбор температуры, давления прессования и времени выдержки при прессовании. Контрольные вопросы и ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
... неорганических веществ в тонкоизмельченном состоянии. Детали и сборочные единицы широко применяют в электронике, автоматике, телемеханике, вычислительной технике, квантовой электронике и других отраслях приборостроения благодаря рядц замечательных свойств; морозо-и нагревостойкости, высокой механической прочности, твердости, малым диэлектрическим потерям, инертности к раду агрессивных сред, ...
0 комментариев