2. Логарифмом числа b наз-ся показатель степени в к-рую нужно возвести основание а чтобы получить число b.
Из опр-ия имеем: a^ logab =b (осн-ое лог-ое тождесто)
Св-ва логарифмов: При любом а>0(а¹1), и любых пол-ных х и у выполняются следующие св-ва:
1) loga1=0
2) logaа=1
3) loga(ху)= logaХ+ logaУ
Док-во: Воспользуемся осн-ным лог-им тождеством
a ^ logab =b и св-ом показат-ной ф-ции
а^ х+у =а^x * а^y имеем
а^ loga(xy)=xy= a^ logax *a^ logay =a ^logax +logay
4) loga(Х/У)= logaХ- logaУ
5) logaХ^Р= рlogaХ
6) Формула перехода:
logaХ= logbX/ logbA
Билет №10.
1. Ф-ция F наз-ся первообразной ф-ции f на промежутке I, если для всех значений аргумента из этого промежутка F¢(x)=f(x). Например ф-ция F(x)=4x^2+3x-1 явл-ся первообразной ф-ции f(x)=12x^3 на множестве всех действительных чисел. Действительно F¢(x)=12X^2+3 , т.е. F¢(x)=f(x).
2. Если каждому действительному числу поставлен в соответствие его тангенс , то говорят , что задана ф-ция тангенс. Обозначается это так: y=tg x.
Св-ва:1) Областью опр-ния ф-ции явл-ся все действительные числа, кроме чисел вида
X=пи/2 +пи k, kÎZ.
Это следует из опред-ия тангенса (tg x=sin x/cos x). Нужно искл-ть числа, при к-рых знаменатель cos x=0 т.е. х= пи/2+пи k, kÎZ.
2) Множеством значений ф-ции явл-ся все действительные числа:Е(у)=(-¥;+¥).
3) Ф-ция явл-ся нечетной ф-цией, т.е. для любого хÎD(y) выполняется нер-во tg(-x)=-tg x . покажем это, tg (-x)=sin (-x)/cos (-x)= -sin x/cos x= -tg x
4) Ф-ция явл-ся периодической с периодом пи k ,где k-целое кроме 0.Наименьшим положительным периодом тангенса явл-ся число пи.
5) Ф-ция тангенс принимает значения 0 при х=пи k, kÎZ. Решением ур-ия tg x=0 явл-ся числа х=пи k, kÎZ
6) Ф-ция tg принимает положительные значения при пи k<x<пи/2+ пи k, kÎZ.
Ф-ция tg принимает отрицательные значения при
-пи/2+пи k<x<пи k, kÎZ . Промежутки знакопостоянства следуют из опр-ия tg x=sin x/cos x.
7) Ф-ция tg возрастает на всей области опр-ия т.е. на промежутках (-пи/2+пи k; пи/2 +пи k) kÎZ
Билет №11
1) Пусть на отрезке [a;b] задана непрерывная и неотрицательная функция y=f(x); S-площадь соответствующей криволинейной трапеции (рис42). Для вычисления площади S разобьём отрезок [a;b] на n равных отрезков, длинна каждого отрезка [Xj;Xj+1] равна b-a / n; на каждом из отрезков построим прямоугольник, высота которого равна значению функции f(Xj); площадь такого прямоугольника равна f(Xj)* DX=f(Xj) * b-a / n. При увеличении числа промежутков, на которые разбивается отрезок [a;b], ступенчатая фигура, состоящяя из прямоугольников, будет «мало отличатся» от криволинейной трапеции, и если Sn-сумма площадей всех прямоугольников, то Sn~=S. В курсе математического анализа показывается, что для любой непрерывной на отрезке [a;b] функции y=f(x) существует число, к которому стремится сумма площадей прямоугольников при неограниченном увеличении n(n ® ¥). Это число называют интегралом, т.е. Sn ® integral (a;b) f(x) dx при n® ¥
2) Если каждому действительному числу поставлен в соответствие его синус, то говорят, что задана функция синус (обозначение y=sin x). Свойства функции синус 1) Область определения функции синус является множество всех действительных чисел, т.е. D(y)=R. Каждому действительному числу х соответствует единственная точка единичной окружности Px, получаемая поворотом точки P0(1;0) на угол, равный х радиан. Точка Рх имеет ординату, равную sinx. Следовательно, для любого х определено значение функции синус. 2) Множеством значений функции синус является промежуток [-1;1], т.е. E(y)=[-1;1]. Это следует из определения синуса: ордината любой точки единичной окружности удовлетворяет условию –1 <= Ypx<=1, т.е. –1<=sin x<=1 3)Функция синус является нечётной, т.е. для любого х принадлежащего R выполняется равенство sin(-x)=-sinx. Пусть точка Рх получена при повороте точки Р0 на х радиан, а точка Р-х получена при повороте точки Р0 на –х радиан (рис 43). Треугольник ОрхР-х является равнобедренным; ON-биссектриса угла РхОР-х, значит, ON является медианой и высотой, проведённой к стороне РхР-х. Следовательно, PxN = P-xN, т.е. ординаты точек Рх и Р-х одинаковы по модулю и противоположны по знаку. Это означает, что sin(-x)=-sinx. 4) Функция синус является периодической с периодом 2ПиR, где R- целое. Кроме 0. Наименьшим положительным периодом синуса является число 2Пи. Каждому действительному числу вида x+2ПиR, где R принадлежит Z, соответствует единственная точка единичной окружности Рх + 2ПиR, получаемая поворотом точки Р0(1;0) на угол x+2ПиR имеет ординату, равную sinx или sin(x+2ПиR). Таким образом, sin(x+2ПиR)=sinx. Этим показано, что числа вида 2ПиR, где R- целое, кроме 0, являются периодом функции. При R=1 имеем sin(x+2Пи)=sinx, следовательно, число 2Пи также является периодом функции синус. Покажем, что 2Пи-наименьшее положительное число, являющееся периодом функции синус. Пусть Т – положительный период функции синус; тогда sin(x+T)=sinx при любом х. Это равенство верно и при x= Пи.2, т.е. sin(пи/2 + T)=sin Пи/2 = 1. Но sinx=1,если x= Пи/2 + 2Пиn, где n принадлежит Z. Наименьшее положительное число вида 2Пиn есть 2Пи. 5) Функция синус принимает значение нуль при x=ПиR, где R принадлежит Z. Решением уравнения sinx=0 являются числа x=ПиR, где R принадлежит Z. 6) Функция синус принимает положительные значения при 2ПиR<x<Пи+2ПиR, где R принадлежит Z. Функция синус принимает отрицательные значения при Пи+2ПиR<x<2Пи+2ПиR, где R принадлежит Z. Промежутки знакопостоянства (рис44) следует из определения синуса. 7) Функция синус возрастает на промежутках [-Пи/2 + 2ПиR; Пи/2 + 2ПиR], где R принадлежит Z, и убывает на промежутках [Пи/2 + 2ПиR; 3Пи/2 + ПиR], где R принадлежит Z Докажем, что функция синус возрастает на промежутке [-Пи/2; Пи/2]. Пусть х1принадлежит [-Пи /2; Пи /2] и х2>x1. Сравним два значения функции: sinx2 – sinx1 = 2cos x1+x2/2 * sin x2-x1/2; 0< x2-x1/2 <= Пи/2, -Пи/2 < x1+x2/2< Пи/2, поэтому, учитывая промежутки знакопостоянства синуса и косинуса, имеем sin x2-x1/2 > 0, cos x1+x2/2>0. Таким образом, sinx2-sinx1>0, значит, большему значению аргумента соответствует большее значение функции, т.е. функция синус возрастает на промежутке [-Пи/2; Пи/2]. В силу периодичности синуса можно утверждать, что синус возрастает на промежутках [-Пи/2 + 2ПиR; Пи/2 + 2ПиR], где R принадлежит Z. 8) Функция синус имеет максимумы , равные 1, в точках Пи/2 + 2ПиR, где где R принадлежит Z. Функция Синус имеет минимумы, равные –1, в точках 3Пи/2 + 2ПиR, где R принадлежит Z. Покажем, что точка х0=Пи/2 является точкой максимума. Функция синус возрастает на промежутке [-Пи/2; Пи/2], т.е. sinx<sinПи/2 для любого х принадлежащего [-Пи/2 ; пи/2]. Функция синус убывает на промежутке [Пи/2; 3Пи/2], т.е. sin x < sin Пи/2 для любого х принадлежащего [Пи/2; 3Пи/2]. Ледовательно, х0+Пи/2 является точкой максимума (по определению), а значение sinx=1 является максимумом. В силу периодичности функции синус можно утверждать, что в точках Пи/2 + 2ПиR, где R принадлежит Z, функция имеет максимум, равный 1. 9) Функции арксинус дифференцируема в каждой точке области определения; производная вычисляется по формуле (sin x)’=cosx. (рис 45)
Билет №12
1) Пусть функция y=f(x) непрерывна на отрезке [a;b]; F-первообразная функции. В этом случае интеграл (a;b) f(x)dx = F(b) – F(a). Пример Вычислить : Интеграл (0;Пи)cos(2x – Пи/4) dx = ½sin(2x – Пи/4)|(0;Пи)= ½sin(2Пи - Пи/4) – ½sin(-Пи/4)=½sin(-Пи/4) + ½sin(Пи/4)=-SQR2/4 + SQR2/4 = 0.
2) Если каждому действительному числу поставить в соответствие его косинус, то говорят, что задана функция косинус. Свойства функции косинус 1)D(y)=R Каждому действительному числу х соответствует единственная точка единичной окружности Рх, получаемая поворотом точки Р0 (1;0) на угол х радиан. Точка Рх имеет абсциссу, равную cos x. Следовательно, для любого х определено значение функции y=cosx. 2)Множеством значений функции косинус является промежуток [-1;1], т.е. E(y)=[-1;1]. Это следует из определения косинуса: абцисса любой точки единичной окружности удовлетворяет условию –1<=Xpx <=1, т.е. –1<= cosx<=1. 3)Функция косинус является чётной, т.е. для любого x Î R выполняется равенство cos(-x)=cosx. Пусть точка Рх получина при повороте точки Ро на х радиан, а точка Р-хполучина при повороте точки Р0 на –х радиан(рис46). Треугольник ОрхР-х является равнобедренным; ON – биссектриса угла РхР-х, значит, является и высокой, проведённой к стороне РхР-х. Из этого следует, что точки Рх и Р-х имеют одну и ту же абсциссу ON, т.е. cos(-x)=cosx. 4)Функция косинус является периодической с периодом 2ПиR, где R-целое, кроме 0. Наименьшим положительным периодом косинуса являеися число 2Пи. Каждому действительному числу вида x+2ПиR, где RÎZ,соответствует единственная точка единичной окружности Рх+2ПиR, получаемая поворотом точки Р0 (1;0) на угол (x+2ПиR) радиан. Точка Рх+2ПиR имеет абсциссу, равную cosx или cos(x+2ПиR), где RÎZ. Таким образом, cosx=cos(x+2ПиR). При R=1 имеем cosx=cos(x+2Пи), следовательно, число 2Пи является периодом функции косинус. Покажем, что 2Пи – наименьший положительный период. Пусть Т-положительный период косинуса; тогда cos(x+T) = cosx при любом значении х. Это равенство должно быть верно и при х=0, т.е. cosT = cos0=0, следовательно, cosT=0. Но cosT=0, если T=2ПиR, где RÎZ. Наименьшее положительное число вида 2ПиR есть 2Пи. 5)Функция косинус принимает значение нуль при х=Пи/2 + ПиR, где RÎZ. Решением уравнения cosx=0 являются числа х+Пи/2+ПиR, где RÎZ. 6)Функция косинус принимает положительные значения при –Пи/2 + 2ПиR<x<Пи/2 + 2ПиR, где RÎZ. Функция косинус принимает отрицательные значения при Пи/2 + 2ПиR<x<3Пи/2 + 2ПиR, где RÎZ. Промежутки знакопостоянства (рис47) следуют из определения косинуса. 7)Функция косинус возрастает на промежутках [-Пи + 2ПиR; 2ПиR], где RÎZ, и убывает на промежутках [2ПиR; Пи+2ПиR], где RÎZ. Чтобы доказать утверждение о промежутках возрастания функции косинус, заметим, что cosx=sin(Пи/2+х). Функция y+sin(Пи/2 + х) возрастает, если –Пи/2 + 2ПиR<=Пи/2 + x<=Пи/2 + 2ПиR, где RÎZ; т.е. если –Пи + 2ПиR, где RÎZ; т.е. если –Пи+2ПиR<=x<=2ПиR, где RÎZ. Поскольку sin(Пи/2 + х)=cosx, функция y=cosx возрастает, если –Пи+2ПиRR<=x<=2ПиR, где RÎZ. Аналогично обосновывается утверждение о промежутках убывания функции. 8)Функция косинус имеет максимумы, равные 1, в точках 2ПиR, где RÎZ. Функция косинус имеет минимумы, равные –1, в точках Пи+2ПиR, где RÎZ. Покажем, что функция y=cosx имеет максимумы в точках 2ПиR, где RÎZ. Замечая, что cosx=sin(Пи/2 + х), найдём точки максимума функции y=sin(Пи/2+x). Её точки максимума Пи/2 + х=Пи/2+2ПиR, где RÎZ, т.е. x=2ПиR, где RÎZ. Максимум функции косинус равен 1. Аналогично проводятся рассуждения о точках минимума. 9)Функция косинус непрерывна на всей области определения.10) Функция косинус дифференцируема в каждой точке области определения; производная функции косинус вычисляется по формуле (cosx)’=-sinx.
Билет №13
1) Для того чтобы найти наибольшее(наименьшее) значение ф-ции y=f(x) имеющее на отрезке [a;b] конечное число критических точек, нужно:1. Найти критические точки, принадлежащие отрезку[a;b]; 2.найти значения ф-ции в критических точках принадлежащих отрезку [a;b];3. Найти значение ф-ции на концах отрезка;4. Из полученных чисел (значения ф-ции в критических точках и на концах промежутка ) выбрать наиболее наибольшее (наименьшее) .Пример: Найти наибольшее и наименьшее значение ф-ции y=x^3 –3x на отрезке [-1,5;3]. 1)D(y)=R; 2) найдем критические точки
y’ =3x^2 –3; А)y’ = 0 если 3x^2 -3=0; 3(x^2 –1)=0; x=0 или x=1. Б) точек в к-рых производная не существует нет. 3) y(-1)=-1+3=2; y(1)=1-3=2; y-(-1.5)=(1.5)^3-3* (-1.5)=(-1.5)^3+2*1.5^2=1.5^2(-1.5+2)=2.25*.5=1.125
y(3)=27-9=18; -2<1.125<2<18
y(1)<y(-1.5)<y(-1)<y(3).
Min [-1,5;3] y(x)=y(1)=-2
Max [-1,5;3] y(x)=y(3)=18
2) 1.sin a+ sin b = 2 sin (a+b)/2 *cos(a-b)/2,
2. sin a- sin b=2 sin(a-b)/2 *cos(a+b)/2,
3. cos a+ cos b=2 cos (a+b)/2*cos (a-b)/2
4. cos a- cos b=-2 sin (a+b)/2*sin (a-b)/2
1)Пусть a=x+y и b=x-y из этих равенств находим:
x=(a+b)/2 и y=(a-b)/2
2) выведем ф-лы для суммы и разности синусов.
Докажем формулу 1: Воспользовавшись формулами синуса суммы и синуса разности имеем sin a+sin b = =sin(x+y)+ sin(x-y)= sin x cos y+ sin y cos x+ sin x* cos y-sin y*cos x= 2sin x*cos y= 2 sin(a+b)/2*cos(a-b)/2. Таким образом sin a+ sin b=2sin(a+b)/2*cos(a-b)/2
Докажем формулу 2:
Sin a-sin b= sin (x+y)- sin(x-y)=sin x cos y+ sin y*cos x –sin x*cos y+sin y*cos x= 2 sin y*cos x=2 sin(a-b)/ 2 * cos(a+b)/2. Таким образом sin a- sin b=2 sin(a-b)/2 *cos(a+b)/2,
3) выведем ф-лы для суммы и разности косинусов.
Докажем формулу 4:
Cos a- cos b=cos(x+y)-cos(x-y)=cos x* cos y-sin x* sin y-cos x*cos y-sin x*sin y=-2sin x*sin y=-2sin(a+b)/2*sin(a-b)/2 Таким образом
cos a- cos b=-2 sin (a+b)/2*sin (a-b)/2
Билет №14
1) Пусть задана ф-ция y=f(x) ее график изображен на рис 49. Точка х1 является точкой максимума , х2 является точкой минимума, т.е. точки х1 и х2- точки экстремума. Значения ф-ции в точках экстремума наз-ся экстремумами ф-ции. Например, значения ф-ции y=cos x в точках x= 2 пи k,где k ÎZ, явл-ся экстремумами (максимумами)ф-ции,т.е. Ymax=1
2) 1.Cos (a-b)=cos a*cos b +sin a*sin b;
2.cos (a+b)=cos a*cos b- sin a*sin b;
... и служит сырьем для цементной промышленности. Уровень развития и факторы размещения основных отраслей промышленности, сельского хозяйства и непроизводственной сферы. Экономика Республики Корея - двенадцатая экономика в мире по величине ВВП. С 1979 г. Корея проводит политику экономической открытости для зарубежных инвесторов, что привело к широкомасштабным американским, японским и ...
... ссудного капитала. Поэтому неудивительно, что в 50—60-х годах капиталовложения значительно опережали величину внутренних сбережений. (В.И. Шипаева "Южная Корея в системе мирового капиталистического хозяйства", Мир, Москва, 1994; В.К. Ломакин "Мировая экономика", Финансы, М, 1998). Таблица 1. Сбережения и капиталовложения, % к ВВП 1976 1980 1985 1990 1995 ...
... - высокая начальная стоимость разработки, отсутствие устоявшихся бизнес-процессов, требующее периодического "доведения" системы, необходимость наличия компьютеров, постоянно подключенных к Интернету. Сайты туристских агентств. Наиболее технологичными среди этих сайтов являются электронные магазины - такой вид агентских сайтов только начинает вырисовываться на современном он-лайновом туристском ...
... свой профессиональный опыт. Самое важное, что удается избавиться от балласта, который неизбежно накапливается в любой организации. Глава 3. Формирование корпоративной культуры на примере Студии Артемия Лебедева 3.1. «Студия Артемия Лебедева» Студия Артемия Лебедева — крупнейшая в России компания, профессионально занимающаяся дизайном, основанная Артемием Лебедевым в 1995 году. Занимается и ...
0 комментариев