Содержание стр. Введение………………………………………………………………………….3


§1. Система аксиом…………………………………………………………….....4

Аксиома объемности…………………………………………………6

Аксиома пары…………………………………………………………6

Аксиома пустого множества…………………………………………6

Аксиомы существования классов……………………………………8

Аксиома объединения……………………………………………….14

Аксиома множества всех подмножеств……………………………14

Ак­сиома выделения………………………………………………….15

Аксиома замещения…………………………………………………16

Аксиома бесконечности……………………………………………..16


§2. Аксиома выбора. Лемма Цорна…………………………………………….19


Заключение………………………………………………………………………22 Список литературы……………………………………………………………...23


Введение

Значение математической логики в нашем и прошлом столетии сильно возросло. Главной причиной этого явилось открытие парадоксов теории множеств и необходимость пересмотра противоречивой интуитивной теории мно­жеств. Было предложено много различных аксиоматических теорий для обоснова­ния теории множеств, но как бы они не отличались друг от друга своими внешними чертами, общее для всех них содержание состав­ляют те фунда­ментальные теоремы, на которые в своей повседневной работе опираются математики. Выбор той или иной из имеющихся тео­рий является в основном делом вкуса; мы же не предъявляем к системе, которой будем пользоваться, никаких требований, кроме того, чтобы она служила достаточной основой для построения современной математики.


§1. Система аксиом

Опишем теорию первого порядка NBG, которая в основном явля­ется системой того же типа, что и система, предложенная перво­начально фон Нейманом [1925], [1928], а затем тщательно пере­смотренная и упрощенная Р. Робинсоном [1937], Бернайсом [1937—1954] и Гёделем [1940]. (Будем в основном следовать монографии Гёделя, хотя и с некоторыми важными от­клонениями.) Теория NBG имеет единственную предикатную букву и не имеет ни одной функциональной буквы или предметной константы. Чтобы быть ближе к обозначениям Бернайса [1937—1954] и Гёделя [1940], мы бу­дем употреблять в качестве переменных вместо x1, x2, … прописные латин­ские буквы X1, Х2, ... (Как обычно, мы используем буквы X, Y, Z, ... для обо­значения произвольных переменных.) Мы вве­дем также сокращенные обо­значения ХY для(X, Y) и XY для (X, Y). Содержательно знак пони­мается как символ отношения принадлежности.

Следующим образом определим равенство:

Определение. Х=Y служит сокращением для формулы .

Таким образом, два объекта равны тогда и только тогда, когда они со­стоят из одних и тех же элементов.

Определение. служит сокращением для формулы (включение).

Определение. XY служит сокращением для Х Y & X ≠ Y (соб­ствен­ное включение).

Из этих определений легко следует

Предложение 1.

(а) Х = Y (X Y & Y X);

(b) Х = Х;

(с) Х = Y Y = Х;

(d) Х = Y (Y = Z Х = Z);

(е) Х = Y (ZX ZY).

Теперь приступим к перечислению собственных аксиом теории NBG, перемежая формулировки самих аксиом различными следствиями из них и некоторыми дополнительными определениями. Предварительно, од­нако, отметим, что в той «интерпретации», которая здесь подразумевается, значениями переменных являются классы. Классы — это совокупности, со­ответствующие некоторым, однако отнюдь не всем, свойствам (те свойства, которые фактически определяют классы, будут частично указаны в аксиомах. Эти аксиомы обеспечивают нам существование необхо­ди­мых в математике классов и являются, достаточно скром­ными, чтобы из них нельзя было вы­вести противоречие). (Эта «ин­терпретация» столь же неточна, как и понятия «совокупность», «свойство» и т. д.)

Назовем класс множеством, если он является элементом какого-ни­будь класса. Класс, не являющийся множеством, назовем собственным клас­сом.

Определение. M(X) служит сокращением для Y(XY) (X есть множе­ство).

Определение. Pr(X) служит сокращением для M(X) (X есть собствен­ный класс).

В дальнейшем увидим, что обычные способы вывода парадоксов приводят теперь уже не к противоречию, а всего лишь к результату, состоя­щему в том, что некоторые классы не являются множествами. Множества предназначены быть теми надежными, удобными классами, которыми мате­матики пользуются в своей повседневной деятельности; в то время как соб­ственные классы мыслятся как чудовищно необъят­ные собрания, которые, если позволить им быть множествами (т. е. быть элементами других классов), порождают противоречия.

Система NBG задумана как теория, трактующая о классах, а не о пред­метах. Мотивом в пользу этого послужило то обстоятельство, что мате­матика не нуждается в объектах, не являющихся классами, вроде коров или молекул. Все математические объекты и отношения могут быть выражены в терминах одних только классов. Если же ради приложений в других науках возникает необходимость привлечения «неклассов», то незначительная мо­дификация системы NBG позволяет при­ме­нить ее равным образом как к классам, так и к «неклассам» (Мостовский [1939]).

Мы введем строчные латинские буквы x1, x2, … в качестве специаль­ных, ограниченных множествами, переменных. Иными словами, x1 A (x1) бу­дет служить сокращением для X (M(X)A (X)) , что содержательно имеет следующий смысл: «A истинно для всех множества, и x1 A (x1) будет служить сокращением для X (M(X)A (X)), что содержательно имеет смысл: «A истинно для некоторого множества». Заметим, что упот­ребленная в этом определении переменная X должна быть отлич­ной от пе­ременных, входящих в A (x1). (Как и обычно, буквы х, y, z, ... будут употреб­ляться для обозначения произвольных переменных для множеств.)

П р и м е р. Выражение ХхyZA (X, х, y, Z) служит сокра­щением для

ХXj (М(Xj)Y(M(Y)&ZA (X, Xj, Y, Z))).

А к с и о м а Т. (Аксиома объемности.) Х = Y (XZYZ).

Предложение 2. Система NBG является теорией первого порядка с равенством.

А к с и о м а Р. (Аксиома пары.) xyzu (u z u = xu = y), т. е. для любых множеств х и у существует множество z такое, что х и у явля­ются единственными его элементами.

А к с и о м а N. (Аксиома пустого множества.) х y (у х), т. е. су­ществует множество, не содержащее никаких элементов.

Из аксиомы N и аксиомы объемности следует, что существует лишь единственное множество, не содержащее никаких элементов, т. е.

1x y (у х). Поэтому мы можем ввести предметную константу 0, подчи­няв ее следующему условию.

Определение. y (y 0).

Так как выполнено условие единственности для неупорядоченной пары, то можем ввести новую функциональную букву g(х, y) для обозна­чения неупорядоченной пары х и у. Впрочем вместо g(х, y) мы будем писать {х, у}. Заметим, что можно однозначно определить пару {X, Y} для любых двух классов Х и Y, а не только для мно­жеств х и у. Положим {X, Y} = 0, если один из классов X, Y не яв­ляется множеством. Можно доказать, что

NBG1Z((M(X)&M(Y)&u (u Z u = X u = Y))

(( M(X) M(Y))&Z=0)).

Этим оправдано введение пары {X, Y}:

Определение. (М(Х) & М(Y) & u (и {X, Y} u = X u = Y))

(( M(X) M(Y)) & {X, Y} = 0).

Можно до­казать, что NBGx y u (u {х, у} u = x u = y) и NBGx y (M({х, у})).

Определение. = {{Х}, {X, Y}}. называется упорядоченной па­рой классов Х и Y.

Никакого внутреннего интуитивного смысла это определение не имеет. Оно является лишь некоторым удобным способом (его предложил Ку-ратовский) определить упорядоченные пары таким образом, чтобы можно было доказать следующее предложение, выражающее характеристическое свойство упорядоченных пар.

Предложение 3.

NBGx y u v ().

Доказательство. Пусть = . Это значит, что {{x}, {x, y}} = {{u}, {u, v}}. Так как {х} {{x}, {x, y}}, то {x} {{u}, {u, v}}. Поэтому {x} = ={u} или {х} = {u, v}. В обоих случаях х = и. С другой стороны, {u, v} {{u}, {u, v}} и, следовательно, {u, v} {{x}, {x, y}}. Отсюда {u, v} = {x} или {u, v} = ={x, y}. Подобным же образом {x, y} = {u} или {х, у}={и, v}. Если или {u, v} = ={x} и {х, y} = {u}, то х = и = у = v, в про­тивном случае {и, v} = {х, у} и, сле­довательно, {и, v} = {u, у}. Если при этом v ≠ u, то y = v, если же v = u, то тоже y = v. Итак, в любом случае, y = v.

Мы теперь обобщим понятие упорядоченной пары до понятия упо­ря­доченной n-ки.

Определение

= Х,

Так, например,

и

В дальнейшем индекс NBG в записи NBGопускается.

Нетрудно дока­зать следующее обобщение предложения 3:


Аксиомы существования классов.

Эти аксиомы утвер­ждают, что для некоторых свойств, выраженных формулами, сущест­вуют соответствующие классы всех множеств, обладаю­щих этими свойствами.

А к с и о м а В1. X u v (X u v) (- отношение).

А к с и о м а В2. X Y Z u (u Z u X & u Y)

(пересечение).

А к с и о м а В3. X Z u (u Z u X) (дополнение).

А к с и о м а В4. X Z u (u Z v (X)) (область

определения).

А к с и о м а В5. X Z u v ( Z u X).

А к с и о м а В6. X Z u v w ( Z X).

А к с и о м а В7. X Z u v w ( Z X).

С помощью аксиом В2—В4 можно доказать

X Y 1Z u (u Z u X & u Y),

X 1Zu (u Z u x),

X 1Zu (u Z v ( X)).

Эти результаты оправдывают введение новых функциональных букв ∩, −, D.


Определения

u (u X ∩ Y u X & u Y) (пересечение классов Х и Y).

u (u u X) (дополнение к классу X).

u (u D (X) v ( X)) (об­ласть определения класса X).

(объединение классов Х и Y).

V = (универсальный класс).

X − Y = X ∩


Общая теорема о существовании классов.

Предложение 4. Пусть φ (X1,…,Xn, Y1,…, Ym) – формула, перемен­ные которой берутся лишь из числа X1,…,Xn, Y1,…, Ym. Назовём такую фор­мулу предикативной, если в ней связными являются только переменные для множеств (т.е. если она может быть приведена к такому виду с помощью принятых сокращений). Для всякой предикативной формулы φ (X1,…,Xn, Y1,…, Ym)

Zx1xn ( Z φ (x1,…,xn, Y1,…, Ym)).

Доказательство. Мы можем ограничиться рассмотрением только та­ких формул φ, которые не содержат подформул вида Yi W, так как всякая та­кая подформула может быть заменена на x (x = Yi& x W), что в свою оче­редь эквивалентно формуле x (z (z x z Yi) & x W). Можно также предполагать, что в φ не содержатся подфор­мулы вида XX, которые могут быть заменены на u (u = X & u X), последнее же эквивалентно u (z (z u z X) & u X). Доказа­тельство проведем теперь индук­цией по числу k логических связок и кванторов, входящих в формулу φ (за­писанную с ограниченными пере­менными для множеств).

1. Пусть k = 0. Формула φ имеет вид xi xj, или xj xi, или xi Yi, где 1 ≤ i < j ≤ n. В первом случае, по аксиоме В1, сущест­вует некоторый класс W1 такой, что

xixj (W1 xi xj).

Во втором случае, по той же аксиоме, существует класс W2 такой, что

xixj(W2 xj xi),

и тогда, в силу

XZ u v ( Z X),

существует класс W3 такой, что

xixj(W3 xj xi).

Итак, в любом из первых двух случаев существует класс W3 такой, что

xixj(W φ (x1,…,xn, Y1,…, Ym)).

Тогда, заменив в

XZ v1vkuw ( Z X)

X на W, получим, что существует некоторый класс Z1 такой, что

x1xi-1xixj (Z1 φ (x1,…,xn, Y1,…, Ym)).

Далее, на основании

XZ v1vmx1xn (

ZX)

там же при Z1 = X, заключаем, что существует класс Z2 такой, что

x1 xi xi+1 xj ( Z2 φ (x1,…,xn, Y1,…, Ym)).

Наконец, применяя


XZ v1vmx1xn ( Z X)

(1)

там же при Z2 = Х, получаем, что существует класс Z такой, что

x1xn ( Z φ (x1,…,xn, Y1,…, Ym)).

Для остающегося случая xi Yi теорема следует из (1) и

XZ x v1vm ( Z x X).


Информация о работе «Аксиоматика теории множеств»
Раздел: Математика
Количество знаков с пробелами: 24811
Количество таблиц: 0
Количество изображений: 698

Похожие работы

Скачать
42398
1
0

... действительных чисел. 3.3. Конечные и бесконечные множества Конечное множество - множество, состоящее из конечного числа элементов. Пример. A = {1, 2, 3, 4, 5}. Основной характеристикой конечного множества является число его элементов. Теория конечных множеств изучает правила: как, зная количество элементов некоторых множеств, вычислить количество элементов других множеств, которые составлены из ...

Скачать
24510
0
0

... нашем примере: сила, с которой брошена монета, форма монеты и многие другие). Невозможно учесть влияние на результат всех этих причин, поскольку число их очень велико и законы их действия неизвестны. Поэтому теория вероятностей не ставит перед собой задачу предсказать, произойдет единичное событие или нет, она просто не в силах это сделать. Еще пример, выпадение снега в Москве 30 ноября является ...

Скачать
66135
2
3

... понятия вероятности задача некоторой несостоятельности классического определения вероятности была решена. Однако наблюдаются попытки дать трактовку вероятности с более широких позиций, в том числе и с позиций теории информации. 2. Динамика развития понятия математического ожидания   2.1 Предпосылки введения понятия математического ожидания Одним из первых приблизился к определению понятия ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

0 комментариев


Наверх