Алгебра и начала анализа. | |
1. Линейная функция y = ax + b, её свойства и график. | Ответ |
2. Квадратичная функция y = ax2 + bx + c, её свойства и график. | Ответ |
3. Функция y = k/x, её свойства и график, график дробно-линейной функции (на конкретном приме-ре). | Ответ |
4. Показательная функция y = ax, её свойства и график. | Ответ |
5. Логарифмическая функция y = logax, её свойства и график. | Ответ |
6. Функция y = sin(x), её свойства и график. | Ответ |
7. Функция y = cos(x), её свойства и график. | Ответ |
8. Функция y = tg(x), её свойства и график. | Ответ |
9. Функция y = ctg(x), её свойства и график. | Ответ |
10. Арифметическая прогрессия, сумма первых n членов арифметической прогрессии. | Ответ |
11. Геометрическая прогрессия, сумма первых n членов геометрической прогрессии. Сумма бесконечно убывающей геометрической прогрессии. | Ответ |
12. Решение уравнения sin(x) = a, неравенств sin(x) > a, sin(x) < a. | Ответ |
13. Решение уравнения cos(x) = a, неравенств cos(x) > a, cos(x) < a. | Ответ |
14. Решение уравнения tg(x) = a, неравенств tg(x) > a, tg(x) < a. | Ответ |
15. Формулы приведения (с выводом). | Ответ |
16. Формулы синуса и косинуса суммы и разности двух аргументов (с доказательством). | Ответ |
17. Тригонометрические функции двойного аргумента. | Ответ |
18. Тригонометрические функции половинного аргумента. | Ответ |
19. Формулы суммы и разности синусов, косинусов (с доказательством). | Ответ |
20. Вывод формулы корней квадратного уравнения, теорема Виета. | Ответ |
21. Логарифм произведения, степени, частного. | Ответ |
22. Понятие производной, ее геометрический смысл и физический смысл. | Ответ |
23. Правила вычисления производной. | Ответ |
Ответ №2. Опр. Квадратичной функцией называется функция, которую можно задать формулой вида y = ax2 + bx + c, где х - независимая переменная, а, b и с - некоторые числа, причем а 0.
Графиком квадратичной функции является парабола.
Свойства функции y = ax2(частный случай) при а > 0.
1. Если х = 0, то y = 0. График функции проходит через начало координат.
2. Если х 0, то y > 0. График функции расположен в верхней полуплоскости.
3. График функции симметричен относительно оси Oy.
4. Функция убывает в промежутке (- ; 0] и возрастает в промежутке [0; + ).
5. Наименьшее значение функция принимает при х = 0. Область значений функции [0; + ).
Свойства функции y = ax2 при а < 0.
1. Если х = 0, то y = 0. График функции проходит через начало координат.
2. Если х 0, то y < 0. График функции расположен в нижней полуплоскости.
3. График функции симметричен относительно оси Oy.
4. Функция убывает в промежутке [0; + ) и возрастает в промежутке (- ; 0].
5. Наименьшее значение функция принимает при х = 0. Область значений функции (- ; 0].
И, так, график функции y = ax2 + bx + c есть парабола, вершиной которой является точка (m; n), где m = , n= . Осью симметрии параболы служит прямая х = m, параллельная оси y. При а > 0 ветви параболы направлены вверх, при a < 0 - вниз.
Ответ 3
Если переменная у обратно пропорциональна переменной х, то эта зависимость выражается формулой , где - коэффициент обратной пропорциональности.
Область определения функции - есть множество всех чисел, отличных от нуля, т. е. . Графиком обратной пропорциональности у=k/x является кривая, состоящая из двух ветвей, симметричных относительно начала координат. Такая кривая называется гиперболой. Если k>0, то ветви гиперболы расположены в I и III координатных четвертях; если же k<.0, то во II и IV координатных четвертях. Заметим, что гипербола не имеет общих точек с осями координат, а лишь сколь угодно близко к ним приближается.№ 4. Опр. Функция, заданная формулой y = ax, где а - некоторое положительное число, не равное еденице, называется показательной.
1. Функция y = ax при а>1
а) область определения - множество всех действительных чисел;
б) множество значений - множество всех положительных чисел;
в) функция возрастает;
г) при х = 0 значение функции равно 1;
д) если х > 0, то ax > 1;
е) если х < 0, то 0< ax <1;
2. Функция y = ax при 0< а <1
а) область определения - множество всех действительных чисел;
б) множество значений - множество всех положительных чисел;
в) функция убывает;
г) при х = 0 значение функции равно 1;
д) если х > 0, то 0< ax <1;
е) если х < 0, то ax > 1.
№5.Опр. Функцию, заданную формулой y = loga x называют логарифмической функцией с основанием а.
Свойства функции y = loga x при a>1:
а) D(f) = R+;
б) E(f) = R;
в) функция возрастает;
г) если x = 1, то loga x = 0;
д) если 0<x<1, то loga x < 0;
е) если x > 1, то loga x > 0.
Свойства функции y = loga x при 0<a<1:
а) D(f) = R+;
б) E(f) = R;
в) функция убывает;
г) если x = 1, то loga x = 0;
д) если 0 < x < 1, то loga x > 0;
е) если x > 1, то loga x < 0.
№6. Опр. Отношение катета прямоугольного треугольника, противолежащего острому углу, к гипотенузе называется синусом этого угла (обозначается sin ).
область определения - множество всех действительных чисел; множество значений - [-1; 1]; функция нечетная: sin(-x) = -sin(x) для всех ; функция периодическая с наименьшим положительным периодом ; sin(x) = 0 при x = ; sin(x) > 0 для всех ; sin(x) < 0 для всех ; функция возрастает на ; функция убывает на .№ 7.Опр. Отношение катета прямоугольного треугольника, прилежащего к острому углу, к гипотенузе называется косинусом этого угла (обозначается cos )
область определения - множество всех действительных чисел; множество значений - [-1; 1]; функция четная: cos(-x) = cos(x) для всех ; функция периодическая с наименьшим положительным периодом ; cos(x) = 0 при ; cos(x) > 0 для всех ; cos(x) > 0 для всех ; функция возрастает на ; функция убывает на№8.Опр. Отношение катета, противолежащего острому углу прямоугольного треугольника, к катету, прилежащему к этому углу, называется тангенсом (обозначается tg ).
область определения - множество всех действительных чисел, кроме чисел вида; множество значений - вся числовая прямая; функция нечетная: tg(-x) = -tg(x) для всех х из области определения; функция периодическая с наименьшим положительным периодом ; tg(x) = 0 при х = ; tg(x) > 0 для всех ; tg(x) < 0 для всех ; функция возрастает на .№9.Опр. Отношение катета, прилежащего острому углу прямоугольного треугольника, к катету, противолежащему к этому углу, называется котангенсом (обозначается ctg )
область определения - множество всех действительных чисел, кроме чисел вида ; множество значений - вся числовая прямая; функция нечетная: ctg(-x) = -ctg(x) для всех х из области определения; функция периодическая с наименьшим положительным периодом ; ctg(x) = 0 при x = ; ctg(x) > 0 для всех ; ctg(x) < 0 для всех ; функция убывает на .Ответ № 10
Числовая последовательность, каждый член которой, начиная со второго, равен предшествующему члену, сложенному с одним и тем же числом, называется арифметической прогрессией. Из определения арифметической прогрессии следует, что разность между любым ее членом и ему предшествующим равна одному и тому же числу, т. е. а2 - а1 = а3 - а2 = ... = ak - ak-1 = ... . Это число называется разностью арифметической прогрессии и обычно обозначается буквой d. Для того чтобы задать арифметическую прогрессию (аn), достаточно знать ее первый член а1 и разность d. Если разность арифметической прогрессии - положительное число, то такая прогрессия является возрастающей; если отрицательное число, то убывающей. Если разность арифметической прогрессии равна нулю, то все ее члены равны между собой и прогрессия является постоянной последовательностью. Характеристическое свойство арифметической прогрессии. Последовательность (аn) является арифметической прогрессией тогда и только тогда, когда любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, т. е. (1) Формула n-го члена арифметической прогрессии имеет вид: an = a1 + d(n-1). (2) Формула суммы n первых членов арифметической прогрессии имеет вид: (3) Если в формулу (3) подставить вместо аn его выражение по формуле (2), то получим соотношение Из определения разности арифметической прогрессии следует, что a1 + an = a2 + an-1 = ..., т. е. сумма членов, равноудаленных от концов прогрессии, есть величина постоянная.Ответ № 11
Числовая последовательность, первый член которой отличен от нуля, а каждый член, начиная со второго, равен предшествующему члену, умноженному на одно и то же не равное нулю число, называется геометрической прогрессией. Из определения геометрической прогрессии следует, что отношение любого ее члена к предшествующему равно одному и тому же числу, т. е. b2:b1 = b3:b2 = ... = bn:bn-1 = bn+1:bn = ... . Это число называется знаменателем геометрической прогрессии и обычно обозначается буквой q. Для того, чтобы задать геометрическую прогрессию (bn), достаточно знать ее первый член b1 и знаменатель q. Если q > 0 (), то прогрессия является монотонной последовательностью. Пусть, например, b1= -2, q = 3, тогда геометрическая прогрессия -2, -6, -18, ... есть монотонно убывающая последовательность. Если q = 1, то все члены прогрессии равны между собой. В этом случае прогрессия является постоянной последовательностью. Характеристическое свойство геометрической прогрессии. Последовательность (bn) является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов, т. е. (1) Формула n-го члена геометрической прогрессии имеет вид: (2) Формула суммы п первых членов геометрической прогрессии имеет вид: , (3) Если в формулу (3) подставить вместо bn его выражение по формуле (2), то получится соот-ношение. , (4) Из определения знаменателя геометрической прогрессии следует, что b1bn = b2bn-1 = …, т.е. произведение членов, равноотстоящих от концов прогрессии, есть величина постоянная.Сумма бесконечной геометрической прогресси при
Пусть (xn) - геометрическая прогрессия со знаменателем q, где и . Суммой бесконечной геометрической прогрессии, знаменатель которой удовлетворяет условию , называется предел суммы n первых ее членов при . Обозначим сумму бесконечной геометрической прогрессии через S. Тогда верна формула .№ 12
Решение тригонометрических уравнений вида sin(x) = a
формула для корней уравнения sin(x) = a, где , имеет вид:Решение тригонометрических неравенств вида sin(x) > a, sin(x) < a
Неравенства, содержащие переменную только под знаком тригонометрической функции, называются тригонометрическими. При решении тригонометрических неравенств используют свойство монотонности триго-нометрических функций, а также промежутки их знакопостоянства. Для решения простейших тригонометрических неравенств вида sin(x) > a (sin(x) < а) используют единичную окружность или график функции y = sin(x).Ответ № 13
Решение тригонометрического уравнения cos(x) = a
Формула для корней уравнения cos(x) = a, где , имеет вид: . Частные случаи:Решение тригонометрических неравенств вида cos(x) > a, cos(x) < a
Для решения простейших тригонометрических неравенств вида cos(x) > a, cos(x) < a используют единичную окружность или график функции y = cos(x); Важным моментом является знание, что:№ 14
Решение тригонометрического уравнения tg(x) = a
Формула для корней уравнения tg(x) = a имеет вид: . Частные случаи:Решение тригонометрических неравенств вида tg(x) > a, tg(x) < a
Для решения простейших тригонометрических неравенств вида tg(x) > a, tg(x) < a используют единичную окружность или график функции y = tg(x). Важно знать, что:№ 15
Формулами приведения называются соотношения, с помощью которых значения тригонометрических функций аргументов , , , , выражаются через значения sin , cos , tg и ctg . Все формулы приведения можно свести в следующую таблицу: Функция | Аргумент | |||||||
sin | cos | cos | sin | -sin | -cos | -cos | -sin | sin |
cos | sin | -sin | -cos | -cos | -sin | sin | cos | cos |
tg | ctg | -ctg | -tg | tg | ctg | -ctg | -tg | tg |
ctg | tg | -tg | -ctg | ctg | tg | -tg | -ctg | ctg |
Все вышеприведенные формулы можно получить, пользуясь следующим правилом:
Любая тригонометрическая функция угла 90°n + по абсолютной величине равна той же функции угла , если число n - четное, и дополнительной функции, если число n - нечетное. При этом, если функция угла 90°n + . положительна, когда - острый угол, то знаки обеих функций одинаковы, если отрицательна, то различны.
№ 16
Формулы косинуса суммы и разности двух аргументов:... b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным. Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры. Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z. ...
... комплект под редакцией А.Г. Мордковича, хотя оставлять без внимания остальные учебники тоже не стоит. § 3. Методика преподавания темы «Тригонометрические функции» в курсе алгебры и начал анализа В изучении тригонометрических функций в школе можно выделить два основных этапа: ü Первоначальное знакомство с тригонометрическими функциями ...
... они не требуют от учащихся дополнительных знаний по физике, а, следовательно, удовлетворяют как принципу научности, так и принципу доступности материала. 2.2. Изучение свойств определенного интеграла с помощью физических моделей При изучении интеграла существенным является отбор свойств, которые необходимо знать ученикам. Их должно быть достаточно для рассмотрения приложений интеграла и в ...
... сформулированной гипотезы необходимо было решить следующие задачи: 1. Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2. Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3. Экспериментально проверить эффективность разработанной методики. Для решения ...
0 комментариев