Бэта-функции 6
Бэта – функции определяются интегралом Эйлера первого рода:
= (1.1)
сходятся при .Полагая =1 – t получим:
= - =
т.e. аргумент и входят в симетрично. Принимая во внимание тождество
по формуле интегрирования почестям имеем
Откуда
= (1.2)
7
При целом b = n последовательно применяя(1.2)
Получим
(1.3)
при целых = m,= n,имеем
но B(1,1) = 1,следовательно:
Положим в (1.1) .Так как график функции симметрична относительно прямой ,то
8
и в результате подстановки ,получаем
полагая в(1.1) ,откуда ,получим
(1.4)
разделяя интеграл на два в пределах от 0 до 1 и от 1 до и применение ко второму интегралу подстановки ,получим
=
2. Гамма-функция 9
Гамма функцию определяет интеграл Эйлера второго рода
G(a) = (2.1)
сходящийся при 0.Положим =ty,t > 0 ,имеем
G(a) =
и после замены , через и t через 1+t ,получим
Умножая это равенство и интегрируя по t и пределах от 0 до, имеем:
или на основании (1.4) и после изменения в правой части порядка интегрирования ,получаем:
10
откуда
(2.2)
заменяя в (2,1) ,на и интегрируем по частям
получаем рекурентною формулу
(2.3)
так как
но при целом имеем
(2.4)
то есть при целых значениях аргумента гамма-функция превращается в факториал.Порядок которого на единицу меньше взятого значения аргумента.При n=1 в (2.4) имеем
3. Производная гамма функции 11Интеграл
сходится при каждом ,поскольку ,и интеграл при сходится.
В области , где - произвольное положительное число, этот интеграл сходится равномерно, так как и можна применить признак Веерштраса. Сходящимся при всех значениях является и весь интеграл так как и второе слогаемое правой части является интегралом, заведомо сходящимся при любом.Легко видеть что интеграл сходится пов любой области где произвольно.Действительно для всех указаных значений и для всех ,и так как сходится, то выполнены условия признака Веерштрасса. Таким образом , в области интеграл cходится равномерно.
Отсюда вытекает непрерывность гамма функции при.Докажем дифференцируемость этой функции при .Заметим что функция непрерывна при и, и покажем ,что интеграл :
12
сходится равномерно на каждом сегменте , . Выберем число так , чтобы ; тогда при .Поэтому существует число такое , что и на.Но тогда на справедливо неравенство
и так как интеграл сходится, то интеграл сходится равномерно относительно на . Аналогично для существует такое число , что для всех выполняется неравенство . При таких и всех получим , откуда в силу признака сравнения следует , что интеграл сходится равномерно относительно на . Наконец , интеграл
в котором подынтегральная функция непрерывна в области
, очевидно, сходится равномерно относительно на . Таким образом , на интеграл
13
сходится равномерно , а, следовательно , гаммма функция бесконечно дифференцируема при любом и справедливо равенство
.
Относительно интеграла можна повторить теже рассуждения и заключить, что
По индукции доказывается , что Г-функция бесконечно дифференцируема прии для ее я -ой производной справедливо равенство
Изучим теперь поведение - функции и построим єскиз ее графика .
Из выражения для второй производной -функции видно, что для всех . Следовательно, возрастает. Поскольку , то по теореме Роля на сегменте [1,2]производная при и при , т. е. Монотонно убывает на и монотонно возрастает на . Далее , поскольку , то при . При из формулы следует , что при .
14
Равенство , справедливое при , можно использовать при распространении - функции на отрицательное значение .
Положим для, что . Правая часть этого равенства определена для из (-1,0). Получаем, что так продолженная функция принимает на (-1,0) отрицательные значения и при , а также при функция .
Определив таким образом на , мы можем по той же формуле продолжить ее на интервал (-2,-1). На этом интервале продолжением окажется функция, принимающая положительные значения и такая, что при и . Продолжая этот процесс, определим функцию , имеющею разрывы в целочисленных точках (см. рис.1)
Отметим еще раз, что интеграл
определяет Г-функцию только при положительных значениях , продолжение на отрицательные значения осуществлено нами формально с помощью формулы приведения .
15
(рис.1)
... функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением. 2.2 Интегральное представление Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа: В этом случае правая часть уравнения ...
... к гамма-функции с положительным целым параметром, гамма-функции с положительным параметром, гамма-функции для множества точек. Созданная функциональная модель реализации основных способов вычисления гамма функции и ее программная реализация могут служить органической частью решения более сложных задач. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ и литературы 1. Бронштейн, И.Н. Справочник по ...
... -функция непрерывна. Ввиду произвольности s0 ζ(s) непрерывна на всей области определения. Теперь почленным дифференцированием ряда (1), пока формально, найдём производную дзета-функции Римана: (2). Чтобы оправдать этот результат, достаточно удостовериться в том, что ряд (2) равномерно сходится на промежутке и воспользоваться теоремой о ...
... що найбільший теоретичний і прикладний інтерес представляє випадок викладений у другому розділі. Розділ 2 Всі результати першого розділу, що стосуються дзета-функції Римана, були отримані в припущенні, що її аргумент s – дійсне число. Однак, найвидатніші дослідження й численні важливі додатки стали можливі лише після включення в область визначення функції комплексних чисел. Уперше розглянув ...
0 комментариев