2.3 Решение задачи о загрузке

Контрольная работа содержит вопросы по N различным темам. Каждый вопрос типа i имеет вес Vi(i=1,2,…N), а также время, отводимое на ответ Wi. Максимально время, которое может затратить студент на контрольную работу W. Требуется определить максимальное количество баллов (вес), которое может набрать студент за отведенное время W=30. Данные приведены в таблице:

I Wi Vi

1  5

2  6

3  4

4  3

5

6  6

7  5

8  7

2

3

1

4

7

5

3

2

2

3

2

4

6

5

4

2

Решить задачу, приведя ее к рекуррентным соотношениям.

Сначала рассмотрим задачу в общей постановке. Если обозначить количество вопросов типа і через ki, то задача принимает следующий вид:

при ограничениях

ki-неотрицательные числа.

Если отбросить требования целочисленности ki, то решение задачи нетрудно найти с помощью симплекс-метода (см. Приложение В). В самом деле, так как остается лишь одно ограничение, базисной будет только одна переменная, и задача сводится к выбору типа і, для которого величина viW/wi принимает максимальное значение. Исходная задача не является задачей линейного программирования, и для ее решения необходимо использовать метод динамического программирования. Следует отметить, что рассматриваемая задача может быть также решена с помощью методов целочисленного программирования.

Каждый из трех основных элементов модели ДП определяется следующим образом.

1.  Этап j ставится в соответствии типу j, j=1,2,…,N.

2.  Состояние yj на этапе j выражает суммарный вес вопросов, количество ответов на которые приняты на этапах j,j+1,…,N; при этом y1=W и yj=0,1,…,W при j=2,3,…,N.

3.  Варианты решения kj на этапе j описываются количеством вопросов типа j. Значение kj заключено в пределах от нуля до [W/wj], где [W/wj]-целая часть числа (W/wj).

Пусть fi(yi)-максимальный суммарный вес вопросов, ответы на которые приняты на этапах j,j+1,…,N при заданном состоянии yj.

Рекуррентное соотношение (для процедуры обратной прогонки) имеет следующий вид:

Заметим, что максимальное допустимое значение kj ограничено величиной [yj/wj]. Это позволяет автоматически исключать все не являющиеся допустимыми варианты при заданном значении переменной состояния yj.

Решение исходной задачи (см. приложении А):

Этап 8.

Этап 7.

Этап 6.

Этап 5.

Этап 4.

Этап 3.

Этап 2.

Этап 1.

Оптимальное решение определяется теперь следующим образом. Из условия W=30 следует, что первый этап решения задачи при y1=30 дает оптимальное решение k1=0, которое означает, что на 0 (нуль) вопросов 1-го типа будут даны ответы. Далее находим:

 

y1=30

k1=0

y2=y1-2*k1=30

k2=0

y3=y2-4*k2=30

k3=4

y4=y3-k3=26

k4=1

y5=y4-4*k4=22

k5=0

y6=y5-7*k5=22

k6=0

y7=y6-5*k6=22

k7=5

y8=y7-3*k7=7

k8=7

Соответственно оптимальным решением задачи является (0,0,4,1,0,0,5,7), соответственно максимально количество баллов, которое студент может набрать за отведенное время равно 46.


Информация о работе «Динамическое программирование (задача о загрузке)»
Раздел: Математика
Количество знаков с пробелами: 26694
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
28329
1
8

... задачи, то лучше потратить время на построение приближенного алгоритма, чем пытаться построить полиномиальный, или же, если это позволяют условия, использовать алгоритмы с экспоненциальной сложностью работы Глава 2 Методы решения задачи о рюкзаке   2.1 Классификация методов   На практике очень часто возникают NP-полные задачи, задач о рюкзаке – одна из них . Конечно надежд, на то что для ...

Скачать
82416
8
19

... 0 505/103 0 792/103 669/103 500/103 Анализ Таблицы 6 позволяет сделать вывод о допустимости и оптимальности базиса XБ4=(x5, x7, x1, x2, x4)T. 3.4 Результат решения задачи планирования производства В результате решения поставленной задачи симплекс-методом получили набор производимой продукции x=(x1, x2, x3, x4, x5)=( 15145/103, 8910/103, 0, 1250/103, 3255/103), который удовлетворяет всем ...

Скачать
48658
0
0

... времени на возню с файлами на дисках или ожидание ввода, не смогут продемонстрировать какое-то впечатляющее увеличение скорости. 2. КЛАССИФИКАЦИЯ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ 2.1. Машинно – ориентированные языки  Машинно – ориентированные языки – это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и ...

Скачать
74770
0
0

... реакции или вмешательства оператора. Точки диалога по своей природе подразделяются на информационные (для ввода данных) и управляющие (для выбора дальнейшего хода обработки). Принятый в автоматизированной системе маркетинга одежды способ построения человеко-машинного диалога обеспечивает максимальную наглядность, простоту и удобство работы в режиме эксплуатации. 3. Определение емкости, оценка ...

0 комментариев


Наверх