33.   Нормальное уравнение плоскости. Общее уравнение плоскости.

Зафиксировав неку т. О в пространстве положение плоскости П будет определено, если задать следующие величины: расстояние до нее от начальной т. О, т. е. длину р отрезка ОТ, перпендикуляра, опущенного из т. О на плоскость П и единичный в-р n0, |n0|=1, перпендикулярный плоскости П и направленный из начальной т. О к этой плоскости.

Когда текущая т. М движется по плоскости ее радиус в-р r меняется так, что

prn0 OM=p (1)

это соотношение вып для каждой т. принадлежащей плоскости, а для не принадлежащей – нарушается.

(1) являет уравнением этой Плоскости П

prn0 OM=r×n0 или r×n0-p=0 (2)

ур-е (2) – нормальное уравнение плоскости в векторной форме. Радиус-вектор r произвольной т. плоскости наз. ее текущим радиус вектором.

Введем в пространстве прямоугольную Декартову систему координат, поместив ее начало в т. О, тогда в-ры r и n0 можно записать так: n0={cosa, cosb, cosd);

r={x,y,z}

Ур-е (2) примет вид:

x× cosa +y×cosb+z×cosd-p=0 (3) – нормальное уравнение плоскости в координатной форме

Особенности ур-я (3)

1 Сумма квадратов коэффициентов при текущих координатах = 1:

cos2a+cos2b+cos2d=1

2 свободный член (-р) £0

Относительно переменных x,y,z – ур-е (3) явл. ур-ем 1 степени.

Всякое ур-е 1 степени определяет плоскость

Ур-е:

Ax+By+Cz+D=0 (4) – уравнение плоскости общего вида.

Всякий ненулевой, перпендикулярный плоскости вектор наз. нормальным вектором этой плоскости. В-р n={A,B,C} нормальный в-р плоскости, заданной ур-ем (4), таким образом коэффициенты при координатах в ур-е (4) являются координатами нормального в-ра этой плоскости. Все другие нормальные вектора получают из в-ра n умножая его на любое ¹ 0 число.

34.   Ур-е плоскости проходящей через заданную точку перпендикулярно заданному направлению

Уравнение плоскости, проходящей через т. М0, заданной r0={x0,y0,x0}, перпендикулярной в-ру n={A,B,C}строится так:

Проведем радиус в-р r={x,y,z} в произвольную т. М этой плоскости. В-р М0М=r-r0 лежит в плоскости П и значит перпендикулярен в-ру n., поэтому их скалярное пр-е = 0

(r-r0)×n=0 (1) Рав-во (1) справедливо для всех т. М плоскости П и нарушается если М не принадлежит этой плоскости, тем самым – (1) – векторное уравнение искомой плоскости, в координатной форме это выражается так:

A(x-x0)+B(y-y0)+C(z-z0)+D=0

35.   Исследование ур-я плоскости. неполное ур-е плоскости

По виду общего ур-я можно судить о том как лежит плоскость относительно системы координат OXYZ. Если хотя бы один из коэффициентов общего ур-я = 0, то оно наз. неполным.

Возможны случаи:

1 D=0 П: Ax+By+Сz=0 т. О(0,0) удовлетворяет этому уравнению значит прямая проходит через начало координат

2 А=0 П: Ву+ Сz +D=0 - нормальный в-р n={0,B,C} перпендикулярен оси ОХ отсюда следует, что плоскость параллельна оси ОХ

3 В = 0 П: Aх + Cz +D=0 - нормальный в-р n={А,0,С} перпендикулярен оси ОY отсюда следует, что плоскость параллельна оси ОУ

4 С=0 П: Ax+By+D=0, n={А,B,0} перпендикулярен OZÛП ||OZ плоскость параллельна оси OZ

5 А=0, C=0 П: By+D=0Û y= - D/BÛ тогда из 2 П||ОХ, из 4 П||OZ значит П||OXZ

6 А=0, В=0 П: Cz+D=0Ûz= - D/CÛ П||ОХ, П||OY значит П||OXY

7 C=0, В=0 П: Ax+D=0Û x= - D/AÛ П||ОZ, П||OY значит П||OYZ

8 A=0, В=0, D=0 П: Cz=0 Û z=0Û П||ОXY, O Î П значит П= OXY

9 A=0, C=0, D=0 П: By=0 Û y=0Û П||ОXZ, O Î П значит П= OXZ

10 B=0, C=0, D=0 П: Ax=0 Û x=0Û П||ОXY, O Î П значит П= OXY

11 A ¹ 0, В ¹ 0, С ¹ 0 П; - не параллельна ни одной из осей и пересекает их.

36.   Уравнение плоскости проходящей через три данный точки

Даны М1(x1,y1,z1), М2(x2,y2,z2), М3(x3,y3,z3) не лежащие на одной прямой. Пусть М(x,y,z) – точка искомой плоскости.

r1={x1,y1,z1}, r2={x2,y2,z2}, r3={x3,y3,z3} и r={x,y,z} – радиус векторы данных точек.

В силу компланарности в-ров М1М=r-r1, M1M2=r2-r1, M1M3=r3-r1 их смешанное произведение = 0, т. е. радиус в-р т. М удовлетворяет условию:

(r-r1)(r2-r1)(r3-r1)=0 (10)

а ее координаты линейному уравнению:

 (11)

ур-е (10) векторное, а ур-е (11) – координатные уравнения искомой плоскости.

37.   Уравнение плоскости в отрезках.

 Представив общее ур-е плоскости при A,B,C,D ¹ 0 в виде:

и положив a= - D/A, b = -D/B, c = -D/C, получим уравнение плоскости в отрезках:

Найдем координаты точек М1, М2, М3 пересечения П с осями OX, OY, OZ

для М1 имеем

x=a, значит М1(а,0,0)

аналогично получаем:

М2(0,в,0): М3(0,0,с)

Значения а,в,с определяют величину отрезков, отсекаемых П на осях координат.


Информация о работе «Лекции переходящие в шпоры Алгебра и геометрия»
Раздел: Математика
Количество знаков с пробелами: 31002
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
120854
16
5

... дидактических игр на уроках математики, анализ игровой деятельности   Изучив теоретические материалы по развитию мотивации познавательной деятельности, у автора возникло желание и интерес реализации этого на практике. Для того чтобы доказать или опровергнуть, что использование дидактических игр на уроках математики активизирует познавательную деятельность учащихся, автором работы в 6 «б» ...

0 комментариев


Наверх