1.3. Зростання та спадання функції

Дослідження функції на зростання та спадання ґрунтується на теоремі математичного аналізу.

Теорема. Нехай функція неперервна на проміжку <a,б> і диференційована в інтервалі (а,б).для того, щоб функція f була зростаючою(спадною) на проміжку <a,б>, необхідно і достатньо виконання двох умов:

1.    

2.   рівність не повинна виконуватися ні в жодному інтервалі, що міститься в <a,б>.

Як наслідок цієї теореми можна використовувати таку теорему (достатня ознака строгої монотонності):

Теорема. Нехай функція f неперервна на проміжку <a,б> і диференційована в інтервалі (а,б). Якщо , то f зростає(спадає) на <a,б>.

Тому для знаходження проміжків зростання та спадання диференційованої функції діють у такий спосіб:

1.   Знаходять:

    а)область визначення функції , якщо вона наперед не задана;

    б)похіднуданої функції;

    в)точки, в яких похідна дорівнює нулю, для чого розв’язують рівняння, а також точки, в яких функція визначена, але похідна  не існує, їх називають критичними точками.

2.   Визначають знак похідної на конкретному інтервалі, достатньо обчислити її значення для будь-якого значення аргументу, що належить цьому інтервалу.

Приклади

Приклад 1. Знайти проміжки зростання та спадання функції

Розв’язання. Функція визначена і диференційована на множені R.

Знайдемо її похідну

.

Нулями похідної є х1=1, х2=.

Оскільки похідна неперервна, то вона зберігає знак на інтервалах . Оскільки похідна задана квадратним тричленом з додатним коефіцієнтом при х2, то вона набуває додатних значень поза коренями, тобто на інтервалах  і від’ємних між коренями, тобто  на інтервалі .

Отже , на інтервалах функція f зростає, а на інтервалі – спадає.

Приклад 2. Довести, що функція

спадає на R.

Розв’язання. Дана функція визначена і диференційована на R.

Знайдемо похідну

.

Оскільки для , то дана функція f спадає на R.


1.4. Найбільше та найменше значення функції

Нехай дано функцію, яка неперервна на відрізку [a;b], диференційована в інтервалі (a;b), за винятком можливо скінченого числа точок, де вона не існує. Необхідно ж знайти найбільше та найменше значення функції на цьому відрізку. А як відомо з математичного аналізу, функція, яка неперервна на відрізку, набуває на ньому свого найбільшого і найменшого значення.

Чим викликана необхідність знаходження найбільшого і найменшого значення функції на відрізку?

Справа в тому, що в практичних задачах, де процес, явище, закон, величина описуються певною функцією, зміст самої задачі накладає певні обмеження на аргумент, тобто аргумент має певні межі.

Так, наприклад, кут трикутника може змінюватися лише від 0 до П, швидкість тіла доводиться розглядати в проміжку часу від t0 до t1 та інше. Тому й необхідно досліджувати поведінку функції на конкретному проміжку [a;b] або на його кінцях, то чинять так:


Информация о работе «Похідна та її застосування»
Раздел: Математика
Количество знаков с пробелами: 31647
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
20798
0
5

... говорять про похідну за напрямком , розуміючи під цим границю відношення  при умові, що вона існує; цю границю позначають . Ясно, що , де – одиничний вектор напрямку , тобто . Зауваження. Похідна Фреше  і похідна за напрямком  є елементами різної природи:  є лінійний оператор з X в Y, в той час як є елементом простору Y. Якщо відображення  диференційовне в точці  за Фреше, то воно диференційовне ...

Скачать
66259
3
216

... запам’ятовуванню за рахунок активізації декількох аналізаторів: слуху, зору та підтримання постійного контакту з учнями під час уроку. ЛІТЕРАТУРА Махмутов М. Й. Проблемноє обучение. -М.: Педагогика, 1975. – 240 с. Методи обучения математике / Под ред. А. А. Столяра. –Минск.: Висш. шк.,1981. – 398 с. Г.П.Бевз. Методика викладання математики. 3-видання. -К.: Вища школа, 1989. – 352 с. Н.В. ...

Скачать
218746
21
0

... нтуватися на використання підручників [53; 54; 5]. У класах фізико-математичного спрямування доцільно орієнтуватись на використання підручників [53; 54; 5; 1].   РОЗДІЛ 2 ОСОБЛИВОСТІ ВИВЧЕННЯ МАТЕМАТИКИ У ПРОФІЛЬНИХ КЛАСАХ В СУЧАСНИХ УМОВАХ 2.1. ОСНОВНІ ПОЛОЖЕННЯ ПРОФІЛЬНОЇ ДИФЕРЕНЦІАЦІЇ НАВЧАННЯ МАТЕМАТИКИ Математика є універсальною мовою, яка широко застосовується в усіх ...

Скачать
111999
3
53

... може бути компетентною або некомпетентною в певних питаннях, тобто мати компетентність (компетентності) у певній галузі діяльності. Саме тому, одним із результатів навчання курсу «Застосування ІКТ у навчальному процесі з математики» вбачається формування в майбутніх вчителів відповідних ключових фахових компетентностей. Зазначене вище наштовхнуло на дослідження компетентностей: внаслідок чого ...

0 комментариев


Наверх