1.   знаходять критичні точки в інтервалі (a;b) (точки, в яких похідна дорівнює нулю або не існує), обчислюють значення функції в цих точках;

2.   знаходять значення функції на кінцях відрізка, тобто;

3.   серед усіх значень вибирають найбільше і найменше значення.

У випадку, коли функція монотонна на відрізку [a;b], то найбільшого і найменшого значення вона досягає на кінцях відрізка. У цьому випадку обмежуємось обчисленням значень .

По-іншому складається ситуація, якщо необхідно знайти найбільше та найменше значення функції, неперервної в інтервалі (a;b).

Зрозуміло, що функція у цьому випадку не може досягати найбільшого і найменшого значення на кінцях інтервалу. Наприклад, функція  в інтервалі (3;6) не має ні найбільшого, ні найменшого значення у внутрішніх точках інтервалу. У цьому випадку чинять так:

    1. знаходять критичні точки, що належать цьому інтервалу, і обчислюють значення функції в цих точках;

    2. знаходять ліву та праву границі відповідно в точках а і б , тобто . Якщо ці границі існують, то їх порівнюють із значеннями функції в критичних точках. Якщо виявиться, що значення в критичних точках більші(менші) за знайдені границі, то це і буде найбільшим(найменшим) значенням функції на інтервалі.

Приклади.

Приклад 1. Знайти найбільше та найменше значення функції на відрізку [a;b]

Розв’язання. На даному відрізку функція визначена і неперервна, диференційована в інтервалі(-2;2). Знайдемо похідну, критичні точки:

х=0

знайдемо значення функції в критичній точці і на кінцях відрізка:

Отже,

.

Приклад 2. Знайти найбільше та найменше значення функції на відрізку [a;b]

Розв’язання. Функція визначена і неперервна на відрізку , диференційна в інтервалі (-1;1). Тому вона набуває на даному відрізку найбільшого і найменшого значення. Знайдемо критичні точки даної функції. Для цього знайдемо похідну

і прирівняємо її до нуля:

х4+8х=0; х=0; х=-2.

Отже, на інтервалі (-1;1)функція має лише одну критичну точку х=0. знайдемо значення функції в цій точці .

Обчислимо значення функції на кінцях відрізка

, .

Отже,

,

Відповідь:,

 

1.5. Означення дотичної, піддотичної, нормалі

Нехай функція y=f(x) диференційована в точці х0. рівняння дотичної до графіка функції y=f(x) в цій точці має такий вигляд:

,

де х і у – біжучі координати дотичної, f ‘(x0)=k – кутовий коефіцієнт дотичної, який дорівнює значенню похідної в точці х0, тобто тангенс кута нахилу дотичної до доданого напрямку осі абсцис.

Відрізок АВ, що міститься між абсцисою точки дотику і точкою перетину дотичної з віссю абсцис, називають під дотичною. Її довжина дорівнює |х01|.

Пряма МС, перпендикулярна до дотичної в точці її дотику М до графіка функції у=f(x), називається нормаллю.

Рівняння нормалі записують у вигляді:

якщо f ‘(x0)0(в противному разі рівняння нормалі х-х0=0).

На цей матеріал можна скласти ряд задач. Розглянемо деякі з них.

1. Дано абсцису точки дотику х0 графіка функції у=f(x), а необхідно записати рівняння дотичної, що проходить через точку з цією абсцисою.

Для цього знаходимо похідну функції у=f(x), її значення в точці х0, тобто , та значення функції в точці х0, тобто . Цих даних достатньо, щоб записати рівняння дотичної .

2. Який кут утворює дотична з додатним напрямком осі абсцис, якщо відома абсциса точки дотику х0?

Оскільки кутовий коефіцієнт дотичної ,то .

Таким чином, задача зводиться до знаходження похідної функції у=f(x), тобто y’=f ‘(x), і обчислення її значення в точці х0.

3. Знайти гострий кут між дотичними, проведеними до графіків функцій ,що мають спільну абсцису х0:

, .

4. Знайти довжину дотичної до графіка функції у=f(x), абсциса точки дотику якої дорівнює х0.

Довжиною дотичної прийнято називати відстань між точкою дотику до графіка функції і точкою її перетину з віссю абсцис.

У цьому випадку знаходимо

і скористаємося формулою

Приклади:

Приклад 1. Знайти рівняння дотичної до графіка функції

в точці з абсцисою х0=3.

Розв’язання. Знайдемо похідну функції, значення функції та її похідної в точці х0:

скориставшись рівнянням дотичної

,

матимемо

Звідси .

Відповідь:.

Приклад 2. Який кут з віссю абсцис утворює дотична до параболи y=x2-4x+8 в точці (3;5)?

Розв’язання. Безпосередньо підстановкою координат заданої точки в рівняння параболи переконуємося, що вона їй належить.

Знайдемо похідну y’=2x-4.

Тоді . Звідси

Відповідь:

Приклад 3. Дотична до графіка функції

нахилена до осі абсцис під кутом . Знайти координати точки дотику.

Розв’язання. Знайдемо похідну функції:

.

За умовою y’(x0)=tg=1 маємо

отже, дотична до параболи проходить через точку А(2;2).

Відповідь: А(2;2).


Розділ 2

Застосування похідної

2.1. Правила диференціювання

Теорема: Якщо функції u(x) і n(x) мають похідні у всіх точках інтервалу (a; b), то

(u(x)±(x))’ = u’(x)±n’(x)

для любого х є (a; b). Коротше,

(u±n)’ = u±n’

Доведення: Суму функцій u(x)+n(x), де х є (a; b), яка представляє собою нову функцію, позначимо через f(x) і знайдемо похідну цієї функції,

Нехай х0 – деяка точка інтервалу (a; b).

 Тоді  

Також,

Так як

х0 – допустима точка інтервалу (a; b), то маємо:

Випадок добутку розглядається аналогічно. Теорема доведена.

Наприклад,

а)

б)

в)

Зауваження. Методом математичної індукції доводиться справедливість формули (u1(x) + u2 (x) +… кінцевого числа складених.

Теорема. Якщо функції u(x) і n(x) мають похідні у всіх точках інтервалу (a; b), то

для любого х є (a; b). Коротше,

Доведення. Позначимо похідні через  х є (a; b), і найдемо похідну цієї функції, виходячи із визначення.

Нехай х0 – деяка точка інтервалу (a; b). Тоді

Навіть так як

то

 

Так як х0 – вільна точка інтервалу (a; b), то маємо

Теорема доведена.

Приклад,

а)

б)

в)

Наслідок. Постійний множник можна виносити за знак похідної:

Доведення. Застосувавши множник можна виносити за знак теорему про похідну де а – число, отримаємо

Приклади.

а)

б)

Похідна частки двох функцій .

Теорема. Якщо функції  мають похідні у всіх точках інтервалу (a; b), причому  для любого х є (a; b), то

для любого х є (a; b).

Доведення. Позначимо тимчасово  через  знайдемо використовуючи визначення похідної.

Нехай х0 – деяка точка інтервалу (a; b).

Тоді,

Навіть, так як

 то

і послідовно

Так як х0 – вільна точка інтервалу (a; b), то в останній формулі х0 можна замінити на х. Теорема доведена.

Приклади.

а)  

б)


Информация о работе «Похідна та її застосування»
Раздел: Математика
Количество знаков с пробелами: 31647
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
20798
0
5

... говорять про похідну за напрямком , розуміючи під цим границю відношення  при умові, що вона існує; цю границю позначають . Ясно, що , де – одиничний вектор напрямку , тобто . Зауваження. Похідна Фреше  і похідна за напрямком  є елементами різної природи:  є лінійний оператор з X в Y, в той час як є елементом простору Y. Якщо відображення  диференційовне в точці  за Фреше, то воно диференційовне ...

Скачать
66259
3
216

... запам’ятовуванню за рахунок активізації декількох аналізаторів: слуху, зору та підтримання постійного контакту з учнями під час уроку. ЛІТЕРАТУРА Махмутов М. Й. Проблемноє обучение. -М.: Педагогика, 1975. – 240 с. Методи обучения математике / Под ред. А. А. Столяра. –Минск.: Висш. шк.,1981. – 398 с. Г.П.Бевз. Методика викладання математики. 3-видання. -К.: Вища школа, 1989. – 352 с. Н.В. ...

Скачать
218746
21
0

... нтуватися на використання підручників [53; 54; 5]. У класах фізико-математичного спрямування доцільно орієнтуватись на використання підручників [53; 54; 5; 1].   РОЗДІЛ 2 ОСОБЛИВОСТІ ВИВЧЕННЯ МАТЕМАТИКИ У ПРОФІЛЬНИХ КЛАСАХ В СУЧАСНИХ УМОВАХ 2.1. ОСНОВНІ ПОЛОЖЕННЯ ПРОФІЛЬНОЇ ДИФЕРЕНЦІАЦІЇ НАВЧАННЯ МАТЕМАТИКИ Математика є універсальною мовою, яка широко застосовується в усіх ...

Скачать
111999
3
53

... може бути компетентною або некомпетентною в певних питаннях, тобто мати компетентність (компетентності) у певній галузі діяльності. Саме тому, одним із результатів навчання курсу «Застосування ІКТ у навчальному процесі з математики» вбачається формування в майбутніх вчителів відповідних ключових фахових компетентностей. Зазначене вище наштовхнуло на дослідження компетентностей: внаслідок чого ...

0 комментариев


Наверх