5. Формирование М-задачи

Далеко не всегда имеет смысл разделять решение задачи линейного программирования на два этапа – вычисление начального опорного плана и определение оптимального плана. Вместо этого решается расширенная задача (М-задача). Она имеет другие опорные планы (один из них всегда легко указать), но те же решения (оптимальные планы), что и исходная задача.

Рассмотрим наряду с исходной задачей (2.1) - (2.3) в канонической форме следующую расширенную задачу (М-задачу):

(5.1)

(5.2)

. (5.3)

Здесь М>0 – достаточно большое число.

Начальный опорный план задачи (5.1) - (5.3) имеет вид

Переменные  называются искусственными переменными.

Таким образом, исходная задача линейного программирования с неизвестным заранее начальным опорным планом сводится к М-задаче, начальный опорный план которой известен. В процессе решения этой расширенной задачи можно либо вычислить оптимальный план задачи (2.1) - (2.3), либо убедиться в ее неразрешимости, если оказывается неразрешимой М-задача.

В соответствии с вышеизложенным имеем: требуется решить задачу (2.12), (2.13), записанную в канонической форме. Введем искусственную неотрицательную переменную х9 и рассмотрим расширенную М-задачу

(5.4)

при условиях

(5.5)

, где .

где М – сколь угодно большая положительная величина.

Как и в L-задаче, добавление только одной искусственной переменной  (вместо пяти) обусловлено тем, что исходная задача уже содержит четыре единичных вектора условий А4, А5, А6, А7.


6. Решение М-задачи II алгоритмом симплекс-метода

Описание II алгоритма

Второй алгоритм (или метод обратной матрицы) симплекс метода основан на ином способе вычисления оценок  векторов условий Аj, чем в первом алгоритме.

Рассматривается задача линейного программирования в канонической форме (2.1) - (2.3). Пусть Х – опорный план с базисом . Все параметры, необходимые для оценки плана на оптимальность и перехода к лучшему плану, можно получить, преобразовывая от шага к шагу элементы матрицы .

Действительно, зная обратную матрицу , можно получить базисные составляющие опорного плана:

и вычислить оценки векторов условий относительно текущего базиса

, (6.1)

предварительно определив вектор-строку  по формуле

или

. (6.2)

Здесь - вектор-строка из коэффициентов линейной формы, отвечающих базисным переменным.

Оценки  позволяют установить оптимальность рассматриваемого опорного плана и определить вектор Ак, вводимый в базис. Коэффициенты  разложения вектора Ак по текущему базису вычисляются по формуле

.

Как и в I алгоритме, вектор, подлежащий исключению из базиса, определяется величиной

.

Таким образом при втором алгоритме на каждом шаге запоминаются базисные компоненты , обратная матрица , значение линейной формы F(X) и вектор Y, соответствующие текущему опорному плану Х. Элементы столбцов матрицы  удобно рассматривать как коэффициенты  разложения единичных векторов  по векторам базиса. Рекуррентные формулы, связывающие параметры двух последовательных итераций

; (6.3)

. (6.3)

Здесь

.

Результаты вычислений сводятся в основные таблицы (вида табл. 6.1) и вспомогательную таблицу (вида табл. 6.2); столбцы В, е1, …, еm основных таблиц (все m+1 позиций) называют главной частью этих таблиц. Столбец Аk – разрешающий столбец, строка l – разрешающая строка.

Таблица 6.1 Таблица 6.2

N

B

t

N B

1

1

l

m

m+1

C

M

0

m+1

1

 

2

 

 

Краткое описание алгоритма.

1. Нулевая итерация:

а) составляется вспомогательная табл. 6.2, в которую вносятся параметры задачи; дополнительная строка таблицы с номером ν заполняется по мере выполнения ν-й итерации;

б) составляется основная табл. 6.1 с номером 0, в которой заполняются первые m строк, за исключением последних двух столбцов Аk и t. Элементы  и  определяются скалярными произведениями (Cx, ej) и (Cx, B) соответственно. Нулевая итерация заканчивается заполнением нулевой дополнительной строки вспомогательной таблицы с оценками .

2. (ν+1)-я итерация.

Пусть ν-я итерация закончена. В результате заполнена ν-я основная таблица, за исключением двух последних столбцов, и ν-я дополнительная строка вспомогательной таблицы. Просматривается эта строка. Если все , то опорный план - решение задачи. Если хотя бы одна , то в базис вводится вектор Аk с  (обычно ). После этого заполняется столбец  основной таблицы. В позицию (m+1) этого столбца заносится оценка  вектора Аk. Остальные элементы этого столбца равны

.

Возможны два случая:

1)    все  - задача неразрешима;

2)   хотя бы для одного i. В этом случае, также как и в первом алгоритме, заполняется столбец (t) основной таблицы ν, определяется разрешающий элемент . Главная часть заполняется по рекуррентной формуле (6.3). Заполняется (ν+1)-я дополнительная строка вспомогательной таблицы. На этом заканчивается (ν+1)-я итерация.

Решение М-задачи

Таблица 6.3

Таблица 6.4

Задача (5.4), (5.5) имеет опорный план Х0 = (0, 0, 0, , 0 , ) с базисом . Следовательно, . Процесс решения М-задачи вторым алгоритмом приведен в основной табл. 6.3 и вспомогательной табл. 6.4.

Решение М-задачи получено за 5 шагов. Оптимальный план ее равен  и . В оптимальном плане М-задачи искусственная переменная х9 = 0, поэтому  - решение задачи (2.12), (2.13) и .

Окончательное решение задачи определения плана смешения компонентов полностью повторяет решение, рассмотренное в завершающей части п.4 (см. стр.11-12).


Информация о работе «Решение задач линейной оптимизации симплекс – методом»
Раздел: Математика
Количество знаков с пробелами: 23781
Количество таблиц: 4
Количество изображений: 16

Похожие работы

Скачать
36149
6
0

... положит в такой симплекс-таблице текущие базисные переменные равными Ai,0, а свободные - нулю, то будет получено оптимальное решение. Практика применения симплекс метода показала, что число итераций, требуемых для решения задачи линейного программирования обычно колеблется от 2m до 3m, хотя для некоторых специально построенных задач вычисления по правилам симплекс метода превращаются в прямой ...

Скачать
82416
8
19

... 0 505/103 0 792/103 669/103 500/103 Анализ Таблицы 6 позволяет сделать вывод о допустимости и оптимальности базиса XБ4=(x5, x7, x1, x2, x4)T. 3.4 Результат решения задачи планирования производства В результате решения поставленной задачи симплекс-методом получили набор производимой продукции x=(x1, x2, x3, x4, x5)=( 15145/103, 8910/103, 0, 1250/103, 3255/103), который удовлетворяет всем ...

Скачать
25716
1
1

... - метод для решения задач линейного программирования. Задачи курсовой заботы: 1.         привести теоретический материал; 2.         на примерах рассмотреть симплекс метод; 3.         представить данную курсовую работу в виде презентации. Математическое программирование Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи ...

Скачать
62893
11
17

... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...

0 комментариев


Наверх