7. Формирование двойственной задачи

Произвольной задаче линейного программирования определенным образом соответствует некоторая другая задача линейного программирования. Будем называть ее двойственной, а первоначальную задачу – исходной.

Обозначим

; ; ; ; (7.1)

Теперь исходная задача (2.1) - (2.3) в канонической форме может быть записана в матричном виде следующим образом.

Требуется определить вектор , обращающий в максимум

. (7.2)

при условиях

AX=B; (7.3)

. (7.4)

Тогда двойственная задача – определить вектор , обращающий в минимум

f(Y)=YB (7.5)

при условиях

. (7.6)

Транспонируя обе части неравенства (7.6), записанного в виде строки, и учитывая , получим

. (7.7)

Отметим, что в двойственной задаче переменные yiмогут быть и отрицательными.

Рассмотрим в качестве исходной задачу (2.12), (2.13). С учетом (7.1) и (7.7) запишем

 

С = (120, 100, 150, 0, 0, 0, 0, 0),  B = (, ),

.

Двойственная задача имеет вид

; (7.8)

(7.9)

8. Формирование оптимального решения двойственной задачи на основе теоремы о двойственности

Оказывается, что для задач (7.2) - (7.4) и (7.5), (7.6), называемых двойственной парой, справедлива следующая теорема.

 

Теорема (первая теорема о двойственности). Если одна из задач двойственной пары (7.2) - (7.4) и (7.5), (7.6) имеет решение, то другая задача также разрешима. При этом для любых оптимальных планов  и (здесь Мх, Му – множества планов соответственно прямой и двойственной задач) задач (7.2) - (7.4) и (7.5), (7.6) имеет место равенство

.

Если линейная форма одной из задач не ограничена (для F(X) – сверху, для f(Y) - снизу), то другая задача не имеет ни одного плана.

Оптимальное решение двойственной задачи может быть найдено на основе следующего следствия из этой теоремы.

 

Следствие. Если вектор  является оптимальным опорным планом задачи (7.2) - (7.4), то вектор  (8.1), является оптимальным опорным планом задачи (7.5), (7.6).

Стоит отметить, что в ходе решения исходной задачи вторым алгоритмом, при каждом шаге вычисляется вектор . И если Х – оптимальный опорный план задачи (7.2) - (7.4), то в (m+1)-й строке, соответствующей основной таблице, находится решение задачи (7.5), (7.6).

Пусть двойственная задача имеет вид (7.8), (7.9).

Так как исходная задача (2.12), (2.13) имеет решение, то на основании рассмотренной теоремы о двойственности двойственная задача также разрешима.

Оптимальным опорным планом исходной является  (см. п.4, п.6). При этом

;  .

Вычислим

.

На основании следствия из теоремы о двойственности можно заключить, что  является оптимальным планом двойственной задачи, при котором . Анализируя (m+1)-ю строку основной таблицы (см. табл. 6.3, шаг 5), можно убедиться в том, что оптимальный план двойственной задачи, сформированный на основе теоремы о двойственности, совпадает с оптимальным планом, найденном при решении исходной задачи вторым алгоритмом симплекс-метода. Это говорит о том, что оптимальный план задачи (7.8) - (7.9) найден верно.

9. Анализ результатов и выводы

В данной работе рассматриваются два способа решения исходной задачи линейного программирования.

Первый заключается в том, что сначала решается вспомогательная задача (L-задача), позволяющая построить начальный опорный план, затем на основе этого найденного плана решается исходная задача (определяется ее оптимальный план). Второй способ является объединением двух этапов и состоит в решении расширенной задачи (M-задачи), также приводящей к нахождению оптимального плана исходной задачи.

Вычислительную основу этих двух способов решения составляют соответственно первый и второй алгоритмы симплекс-метода. Один из параметров, по которому может быть оценен любой итерационный алгоритм – количество шагов, приводящих к решению задачи или установлению ее неразрешимости. Для данной задачи наиболее эффективным методом оказался первый метод(L-задача + исходная задача), т.к. он привел к решению за 4 шага, а второй метод (M-задача) за 5 шагов. Разница в числе шагов, вероятно, обусловлена неоднозначность выбора разрешающего элемента в исходной таблице L-задачи (3.2.1).

Сравнение количества вычислений на каждой итерации приводит к следующим оценочным результатам рассматриваемых алгоритмов. Преимущественная часть вычислений на каждом шаге алгоритмов определяется размерностью главной части таблицы (в первом алгоритме) или основной таблицы (во втором алгоритме). В первом случае она имеет размерность (m+1)x(n+1), во втором - (m+1)x(m+1). Даже учитывая, что второй алгоритм требует построения вспомогательной таблицы, он оказывается более компактным.

Еще одно несомненное достоинство второго алгоритма заключается в возможности определения оптимального плана двойственной задачи из (m+1)-й строки основной таблицы, соответствующей последней итерации, без всяких дополнительных вычислений.


Информация о работе «Решение задач линейной оптимизации симплекс – методом»
Раздел: Математика
Количество знаков с пробелами: 23781
Количество таблиц: 4
Количество изображений: 16

Похожие работы

Скачать
36149
6
0

... положит в такой симплекс-таблице текущие базисные переменные равными Ai,0, а свободные - нулю, то будет получено оптимальное решение. Практика применения симплекс метода показала, что число итераций, требуемых для решения задачи линейного программирования обычно колеблется от 2m до 3m, хотя для некоторых специально построенных задач вычисления по правилам симплекс метода превращаются в прямой ...

Скачать
82416
8
19

... 0 505/103 0 792/103 669/103 500/103 Анализ Таблицы 6 позволяет сделать вывод о допустимости и оптимальности базиса XБ4=(x5, x7, x1, x2, x4)T. 3.4 Результат решения задачи планирования производства В результате решения поставленной задачи симплекс-методом получили набор производимой продукции x=(x1, x2, x3, x4, x5)=( 15145/103, 8910/103, 0, 1250/103, 3255/103), который удовлетворяет всем ...

Скачать
25716
1
1

... - метод для решения задач линейного программирования. Задачи курсовой заботы: 1.         привести теоретический материал; 2.         на примерах рассмотреть симплекс метод; 3.         представить данную курсовую работу в виде презентации. Математическое программирование Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи ...

Скачать
62893
11
17

... . При этом значения cij соответствуют коэффициентам целевой функции исходной замкнутой транспортной задачи (1) и в последующем не изменяются. Элементы xij соответствуют значениям переменных промежуточных решений транспортной задачи линейного программирования и изменяются на каждой итерации алгоритма. Если в некоторой ячейке xij=0, то такая ячейка называется свободной, если же xij>0, то такая ...

0 комментариев


Наверх