4. Критерий устойчивости Михайлова.

Частотные критерии устойчивости получили наиболее широкое практическое применение, так как, во-первых, они позволяют судить об устойчивости замкнутой системы по более простой передаточной функции системы W ( s ) ; во-вторых, анализ устойчивости можно выполнять и по экспериментально определенным частотным характеристикам; в-третьих, с помощью частотных характеристик можно судить и о качестве переходных процессов в системе.

А.В. Михайлов первым предложил использовать развитые в радиотехнике Найквистом частотные методы для анализа устойчивости линейных систем регулирования. Сформулированным им в 1938 г. критерий устойчивости назвали его именем. Рассмотрим существо этого критерия.

Пусть характеристическое уравнение замкнутой системы имеет вид

D ( l ) = l n + a1 l n-1 + a2 l n-2 + ... + an = 0. (13)

Зная его корни l 1 , l 2 , ... , l n , характеристический многочлен для уравнения (13) запишем в виде

D ( l ) = ( l - l 1 ) ( l - l 2 ) ... ( l - l n ). (14)


Im Im


0 Re 0 Re


а) б)


Рис.12. Векторное изображение сомно-жителей характерис-тического уравнения замкнутой системы на плоскости :

а - для двух корней l и l i ;

б - для четырех корней l 1 , l ‘1 , l 2 , l ‘2


Графически каждый комплексный корень l можно представить точкой на плоскости. Поэтому, в свою очередь, каждый из сомножителей уравнения (14) можно представить в виде разности двух векторов ( l - l i ), как это показано на рис.12,а. Положим теперь, что l = j w ; тогда определяющей является точка w на мнимой оси (рис.12,б). При изменении w от - Ґ до + Ґ векторы j w - l 1 и j w - l ‘1 комплексных корней l и l ‘1 повернуться против часовой стрелки, и приращение их аргумента равно + p , а векторы j w - l 2 и j w - l ‘2 повернутся по часовой стрелке, и приращение их аргумента равно - p . Таким образом, приращение аргумента arg( j w - l i ) для корня характеристического уравнения l i , находящегося в левой полуплоскости, составит + p , а для корня, находящегося в правой полуплоскости, - p . Приращение результирующего аргумента D arg D( j w ) равно сумме приращений аргументов его отдельных сомножителей. Если сре1ди n корней характеристического уравнения m лежит в правой полуплоскости, то приращение аргумента составит

D arg D( j w ) = ( n - m ) p - m p = ( n - 2m ) p . (15)

- Ґ < w < Ґдля левой для правой

полуплоскости полуплоскости

Отметим теперь, что действительная часть многочлена

D ( j w ) = ( j w )n + a1 ( j w )n-1 + a2 ( j w )n-2 + ... + an (16)

содержит лишь четные степени w , а мнимая его часть - только нечетные, поэтому

arg D ( j w ) = - arg D ( -j w ), (17)

и можно рассматривать изменение частоты только на интервале w от 0 до Ґ . В этом случае приращение аргумента годографа характеристического многочлена

D arg D( j w ) = ( n - 2m ) p / 2 . (18)

0 Јw < Ґ

Если система устойчива, то параметр m = 0, и из условия (18) следует, что приращение аргумента

D arg D( j w ) = n p / 2 . (19)

0 Јw < Ґ

На основании полученного выражения сформулируем частотный критерий устойчивости Михайлова: для того чтобы замкнутая система автоматического регулирования была устойчива, необходимо и достаточно, чтобы годограф характеристического многочлена в замкнутой системе (годограф Михайлова) начинался на положительной части действительной оси и проходил последовательно в положительном направлении, не попадая в начало координат, n квадрантов комплексной плоскости ( здесь n - порядок характеристического уравнения системы).

j V’ j V’



Информация о работе «Теория устойчивости»
Раздел: Математика
Количество знаков с пробелами: 19438
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
28116
0
6

... строки. Очевидно, что такая операция не изменит знака членов следующей строки и не отразится на конечном результате. Например, элементы третьей строки таблицы (45) можно было бы разделить на 8 для упрощения последующих вычислений. Анализ результатов устойчивости в нелинейных системах. При исследовании устойчивости в цепях постоянного тока при малых возмущениях обнаружение неустойчивости ...

Скачать
43854
0
18

... начальным условиям  . Пусть  — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где . 2. Устойчивость решений систем дифференциальных уравнений. 2.1. Устойчивость по Ляпунову. Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует ...

Скачать
68613
0
0

... владеет Украина, является одним из важнейших измерений ее миссии. То, что она призвана дать мировому сообществу будущего, с точки зрения общечеловеческого развития, становится глобальной миссией Украины. Интерпретация устойчивого развития по М. Руденко позволяет определять наиболее ценные из интеллектуальных достижений, которые должны передаваться потомкам, и формулировать требования к ним. Так, ...

Скачать
31397
0
9

... были определены для всех подставляемых в них значений аргументов. Таким образом, точка с координатами  должна принадлежать множеству  для всех значений  на интервале . Устойчивость по Ляпунову Рассмотрим систему дифференциальных уравнений (??) Выделим некоторое решение  системы (??) и назовем его невозмущенным решением. Решение  назовем устойчивым в смысле Ляпунова ...

0 комментариев


Наверх