3. Простейшие типы точек покоя.
Пусть имеем систему дифференциальных уравнений
ж dx / dt = P ( x , y ),
н (A)
о dy / dt = Q ( x , y ).
Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.
Рассмотрим систему
ж dx / dt = a11 x + a12 y,
н (7)
о dy / dt = a21 x + a22 y.
где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде
x = a 1 e k t , y = a 2 e k t . (8)
Для определения k получаем характеристическое уравнение
a11 - k a12
= 0. (9)
a21 a22 - k
Рассмотрим возможные случаи.
I. Корни характеристического уравнения действительны и различны. Подслучаи :
1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 > 0, k2 < 0. Точка покоя неустойчива (седло).
4) k1 = 0, k2 > 0. Точка покоя неустойчива.
5) k1 = 0, k2 < 0. Точка покоя устойчива, но не асимптотически.
II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи :
1) p < 0 , q № 0. Точка покоя асимптотически устойчива (устойчивый фокус).
2) p > 0 , q № 0. Точка покоя неустойчива (неустойчивый фокус).
3) p = 0, q № 0. Точка покоя устойчива (центр). Асимптотической устойчивости нет.
III. Корни кратные: k1 = k2 . Подслучаи :
1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя.
Для системы линейных однородных уравнений с постоянными коэффициентами
dxin
= е ai j xj ( i = 1 , 2 , ... , n ) (10)
dt i=1
характеристическим уравнением будет
a11 - k a12 a13 ... a1n
a21 a22 - k a23 ... a2n = 0. (11)
. . . . . . . .
an1 an2 an3 ... ann - k
1) Если действительные части всех корней характеристического уравнения (11) системы (10) отрицательны, то точка покоя xi ( t ) є 0 ( i = 1 , 2 , ... , n ) асимптотически устойчива.
2) Если действительная часть хотя бы одного корня характеристического уравнения (11) положительна, Re k i = p i > 0, то точка покоя xi ( t ) є 0 ( i = 1, 2, ... n ) системы (10) неустойчива.
3) Если характеристическое уравнение (11) имеет простые корни с нулевой действительной частью (т.е. нулевые или чисто мнимые корни ), то точка покоя xi ( t ) є 0 ( i = 1, 2, ... n ) системы (10) устойчива, но не асимптотически.
Для системы двух линейных линейных уравнений с постоянными действительными коэфициентами
.
ж x = a11 x + a12 y,
н . (12)
о y = a21 x + a22 y
характеристическое уравнение (9) приводится к виду
k2 + a1 k + a2 = 0.
1) Если a1 > 0 , a2 > 0, то нулевое решение системы (12) асимптотически устойчиво.
2) Если а1 > 0 , a2 = 0, или a1 = 0 , a2 > 0 , то нулевое решение устойчиво, но не асимптотически.
3) Во всех остальных случаях нулевое решение неустойчиво; однако при a1 = a2 = 0 возможен исключительный случай, когда нулевое решение устойчиво, но не асимптотически.
Список литературы:
1. Краснов М. Л., Киселев А. И., Макаренко Г. И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М.: Наука , 1981.
2. Шестаков А. А., Малышева И. А., Полозков Д. П. Курс высшей математики. М.: ВШ , 1987.
3. Иващенко Н. Н. Автоматическое регулирование. М.: ВШ , 1973.
4. Абрамович И. Г., Лунц Г. Л., Эльсгольц Л. Э. Функции комплексого переменного. Операционное исчисление. Теория устойчивости. М.: Наука , 1968.
5. Чемоданов Б.К. Математические основы теории автоматического регулирования. М.: ВШ ,
... строки. Очевидно, что такая операция не изменит знака членов следующей строки и не отразится на конечном результате. Например, элементы третьей строки таблицы (45) можно было бы разделить на 8 для упрощения последующих вычислений. Анализ результатов устойчивости в нелинейных системах. При исследовании устойчивости в цепях постоянного тока при малых возмущениях обнаружение неустойчивости ...
... начальным условиям . Пусть — характеристическое уравнение для определения мультипликаторов. Так как , то оно принимает вид , где . 2. Устойчивость решений систем дифференциальных уравнений. 2.1. Устойчивость по Ляпунову. Вводя определение устойчивости по Лагранжу и Пуассону в пункте 1.3, описывались свойства одной отдельно взятой траектории. Понятие устойчивости по Ляпунову характеризует ...
... владеет Украина, является одним из важнейших измерений ее миссии. То, что она призвана дать мировому сообществу будущего, с точки зрения общечеловеческого развития, становится глобальной миссией Украины. Интерпретация устойчивого развития по М. Руденко позволяет определять наиболее ценные из интеллектуальных достижений, которые должны передаваться потомкам, и формулировать требования к ним. Так, ...
... были определены для всех подставляемых в них значений аргументов. Таким образом, точка с координатами должна принадлежать множеству для всех значений на интервале . Устойчивость по Ляпунову Рассмотрим систему дифференциальных уравнений (??) Выделим некоторое решение системы (??) и назовем его невозмущенным решением. Решение назовем устойчивым в смысле Ляпунова ...
0 комментариев