5. Разностные схемы для решения уравнения КдФ

3.1. Обозначения и постановка разностной задачи. В области ={(x,t):0£x£l,0£t£T} обычным образом введем равномерные сетки, где

Введем линейное пространство Wh сеточных функций, определен­ных на сетке со значениями в узлах сетки yi=yh(xi). Пред­полагается, что выполнены условия периодичности y0=yN. Кроме того, формально полагаем yi+N=yi для i ³ 1.

Введем скалярное произведение в пространстве Wh

(5.1)

Снабдим линейное пространство П/г нормой:


Поскольку в пространство Wh входят периодические функции, то это скалярное произведение эквивалентно скалярному произведе­нию:

Будем строить разностные схемы для уравнения (3.2) на сетке с периодическими краевыми условиями. Нам потребуются обозна­чения разностных аппроксимаций. Введем их.

Используем стандартные обозначения для решения уравнения на очередном (n-м) временном слое, то есть

Введем обозначения для разностных аппроксимаций производных. Для первой производной по времени:

Аналогично для первой производной по пространству:

Теперь введем обозначения для вторых производных:

Третью пространственную производную будем аппроксимировать следующим образом:

Также нам потребуется аппроксимация у2, которую мы обозначим буквой Q и введем следующим образом:

(5.2)

Для записи уравнения на полу целых слоях будем использовать уравновешенную аппроксимацию, т.е.

за исключением аппроксимации у2 на полу целом слое. Приведем одну из возможных аппроксимаций у2 на полу целом слое:

Замечание 2. Стоит отметить, что для 1 выполняется равенство:

Определение 1. Следуя [19] разностную схему для уравнения КдФ будем называть консервативной, если для нее имеет место сеточ­ный аналог первого интегрального закона сохранения, справедливо­го для дифференциальной задачи.

Определение 2. Следуя [19] разностную схему для уравнения КдФ будем называть L2-консервативной, если для нее имеет место сеточ­ный аналог второго интегрального закона сохранения, справедливо­го для дифференциальной задачи.

5.2. Явные разностные схемы (обзор). При построении раз­ностных схем будем ориентироваться на простейшую разностную схему из работы [19] для линеаризованного уравнения КдФ, кото­рое сохраняет свойства самого уравнения КдФ в смысле двух первых законов сохранения.

(5.3)

Исследуем теперь схему (5.4) на свойства консервативности. Вы­полнение первого закона сохранения очевидно. Достаточно просто умножить это уравнение скалярно на 1. Тогда второе и третье сла­гаемые схемы (5.4) дадут 0, а от первого останется:

(5.4)

Это сеточный аналог первого закона сохранения.

Для вывода второго закона сохранения умножим скалярно урав­нение (5.3) на 2t у. Приходим к энергетическому тождеству

(5.5)

Наличие отрицательного дисбаланса говорит не только о невыпол­нении соответствующего закона сохранения, но и ставит под сомне­ние вопрос вообще об устойчивости схемы в наиболее слабой норме L2().)- В работе [15] показано, что схемы семейства (3.18) являются абсолютно неустойчивыми в норме L2().



Другим примером явной двухслойной схемы является двух шаговая схема Лакса-Вендрофа [20]. Это схема типа предиктор-корректор:

В данный момент наиболее популярными схемами для уравнения КдФ считаются трехслойные схемы ввиду их простоты, точности и удобства реализации.

(5.6)

Эту же схему можно представить в виде явной формулы

(5.7)

Самой простой трехслойной схемой является следующая схема:

Эта схема была использована при получении первых численных решений КдФ [8]. Эта схема аппроксимирует дифференциальную задачу с порядком О (t2 + h2). Согласно [21], схема является устой­чивой при выполнении условия (при малых Ь):


Приведем еще несколько схем. Трехслойная явная схема с поряд­ком аппроксимации O(t2 + h4)[20]:

 

Третья производная по пространству аппроксимируется на семи­точечном шаблоне, а первая строится по пяти точкам. Согласно [21], эта схема устойчива при выполнении условия (при малых h):

Легко видеть, что для этой схемы с более высоким порядком ап­проксимации условие устойчивости является более жестким.

В работе [19] предлагается следующая явная разностная схема с порядком аппроксимации О(t2 + h2) :

(5.8)

Так как разностное уравнение (5.8) можно записать в дивергент­ном виде

(5.9)

то, скалярно умножив уравнение (5.9) на 1, получим

следовательно, выполняется соотношение:

которое можно считать сеточным аналогом первого закона сохране­ния. Таким образом, схема (5.8) является консервативной. В [19] доказано, что схема (5.8) является L2-консервативной и ее решение удовлетворяет сеточному аналогу интегрального закона сохранения

 


Информация о работе «Уравнение Кортевега - де Фриса, солитон, уединенная волна»
Раздел: Математика
Количество знаков с пробелами: 39677
Количество таблиц: 8
Количество изображений: 6

0 комментариев


Наверх