5. Преобразуйте в обыкновенную дробь следующие цепные дроби: a) (2, 1, 1, 2, 1, 6, 2, 5); b) (2, 3, 1, 6, 4); c) (1, 3, 2, 4, 3, 1, 1, 1, 5);

d) (0, 3, 1, 2, 7).

Решение: a) (2, 1, 1, 2, 1, 6, 2, 5)=

Составим таблицу подходящих дробей:


2

1

1

2

1

6

2

5

2

3

5

13

18

121

260

1421

1

1

2

5

7

47

101

552

Ответ: =

b) (2, 3, 1, 6, 4)=


2

3

1

6

4

2

7

9

61

253

1

3

4

27

112

Ответ: =

c) (1, 3, 2, 4, 3, 1, 1, 1, 5)


1

3

2

4

3

1

1

1

5

1

4

9

40

129

169

298

467

2633

1

3

7

31

100

131

231

362

2041

Ответ: =

d) (0, 3, 1, 2, 7)=


0

3

1

2

7

0

1

1

3

22

1

3

4

11

81

Ответ: =


6. Разложить в цепную дробь и заменить подходящей дробью с точностью до 0,001 следующие числа:

a) ; b) ; c) ; d) .

Решение: a) =. Выделим из его целую часть: , а дробную часть -2, которая , где . Повторяя эту операцию выделения целой части и переворачивания дробной, получаем:

;

;

.

Мы получили, что , следовательно, неполные частные, начиная с будут повторяться и =(2, (4)).

Составим таблицу подходящих дробей:


2

4

4

4

2

9

38



1

4

17

72


Нам необходимо найти такую подходящую дробь , чтобы . Очевидно, что это , так как 17·72>1000.

Ответ: .


b) =; =5

;

;

;

;

;

.

Мы получили неполные частные, начиная с будут повторяться и =(5, (1, 1, 1, 10)).


5

1

1

1

10

1

5

6

11

17

181

198


1

1

2

3

32

35


, так как 32·35>1000. Ответ: .


c) =(3, 2, 5, 2, 7, 2);


3

2

5

2

7

2

3

7

38

83

619

1321

1

2

11

24

179

382

, так как 24·179>1000.

Ответ: .


d) =; =1

;

;

;

=((1, 2))


1

2

1

2

1

2

1

2

1

1

3

4

11

15

41

56

153


1

2

3

8

11

30

41

102


, так как 30·41>1000.

Ответ: .


7. Найти действительные числа, которые обращаются в данные цепные дроби:

a) (4, (3, 2, 1)); b) ((2, 1))


Решение:

a) (4, (3, 2, 1)) - смешанная периодическая дробь.

, то есть , где

x=((3, 2, 1)) - чисто периодическая цепная дробь. Так как выражение, начинающееся с четвертого неполного частного 3, имеет тот же вид:

, то мы можем записать x=(3, 2, 1, x)= =, после чего приходим к квадратному уравнению относительно x:

D=64+12·7=148 .

Положительное решение и есть x. . Найдем .

=4+=

Ответ: .


b) ((2, 1))=

=(2, 1, )

Сейчас мы можем найти таким же путем, как и в задаче a), но можно решить задачу легче. Составим таблицу подходящих дробей:


2

1

2

3

3+2

1

1

+1

=

D=4+4·2=12

Положительное решение и есть искомое .

Ответ: .


8. Решить в целых числах уравнения:

a) 143x+169y=5; b) 2x+5y=7; c) 23x+49y=53.

Решение:

a) 143x+169y=5 - диофантово уравнение.

(143, 169)=13(НОД находим с помощью алгоритма Евклида)

уравнение решений не имеет.

Ответ: .

b) 2x+5y=7

(2, 5)=1 уравнение имеет решение в целых числах.

Разложим в цепную дробь. =(0, 2, 2). Составим все подходящие дроби. ; ;

На основании свойства подходящих дробей получим

2·2-1·5 =(-1)3 или 2·2+5(-1)=-1

2·(-14)+5·7=7, то есть – частное решение.

Все решения могут быть найдены по формулам

или


c) 23x+49y=53

(23, 49)=1 существуют целые решения.

=(0, 2, 7, 1, 2)

, , , ,

17·23-8·49=(-1)5

23·17+49·(-8)=-1

23·(-901)+49·424=53

или



Информация о работе «Цепные дроби»
Раздел: Математика
Количество знаков с пробелами: 53043
Количество таблиц: 21
Количество изображений: 1149

Похожие работы

Скачать
72202
18
8

... из которых мультипликативна по лемме 2 пункта 13. Значит, ( a ) - мультипликативна.   Следствие 3. . Доказательство. Пусть . Тогда, по лемме 1 пункта 13 имеем: . 5 Китайская теорема об остатках В этом пункте детально рассмотрим только сравнения первой степени вида ax b(mod m), оставив более высокие степени на съедение следующим ...

Скачать
17395
1
12

... так делаем, пока не закончатся элементы цепной дроби. Пример. Цепная дробь: [2,3,4,5] Рациональная дробь: 157/68 Тесты. 1.Некорректные данные 2.Корректные данные Заключение Разработана программа CalcKurs, выполняющая следующие функции: 1.формирование заданного подмножества натурального ряда с помощью общего делителя; 2.факторизация числа с опциями; 3.нахождение НОД и НОК ...

Скачать
17639
1
13

... ; q: char; begin writeln ('Дискретная математика'); writeln ('Курсовая работа, группа 03-119, каф308'); writeln ('выполнил: Тузов И.И. '); writeln ('руководитель: Гридин А.Н. '); writeln; writeln ('Калькулятор с функциями, описанными ниже'); writeln; Writeln ('Нажмите Enter'); readln; clrscr; repeat writeln ('Какую выполнить операцию? '); writeln; writeln ('1-вычисление мн-ва N- ...

Скачать
24303
27
7

... что если уравнение (25) имеет хотя бы одно решение, то оно имеет их бесчисленное множество. Нельзя, конечно, утверждать, что формулами (31) даются все решения уравнения (25). В теории алгебраических чисел доказывается, что все решения уравнения (25) в целых числах можно получить, взяв некоторое конечное и определенное зависящее от  и  число решений этого уравнения и размножив их с помощью формул ...

0 комментариев


Наверх