1. Формула прямоугольников

Теперь рассмотрим первый вид приближённого вычисления:
требуется вычислить определённый интеграл: .

Пусть на отрезке [a,b] задана непрерывная функция y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0,x1,x2,…,xn=b на n равных частей длины Δх, где Δх=(b-a)/n.

Подпись: y=f(x)Обозначим через y0,y1,y2,…,yn-1,yn значение функции f(x) в точках x0, x1, x2…,xn, то есть, если записать в наглядной формуле:

Y0=f(x0), y1=f(x1), y2=f(x2)…yn,=f(xn).

В данном способе подынтегральную функцию заменяем функцией, которая имеет ступенчатый вид (на рис. выделена).

Составим суммы: y0Δx+ y1Δx1+ y2Δx2…+yn-1Δx; Y1Δx+ y2Δx+…+ynΔx

Каждое слагаемое этих сумм выражает площадь, полученных прямоугольников с основанием Δх, которое является шириной прямоугольника, и длиной выраженной через yi: Sпр=a*b=yiΔx.

Каждая из этих сумм является интегральной суммой для f(x) на отрезке [a,b], и равна площади ступенчатых фигур, а значит приближённо выражает интеграл. Вынесем Δx=(b-a)/n из каждой суммы, получим:

f(x)dx≈Δx(y0+y1+…+yn-1);

f(x)dx≈Δx(y1+y2+…+yn).

Выразив x, получим окончательно:

f(x)dx≈((b-a)/n)(y0+y1+…+yn-1);(3)

f(x)dx≈((b-a)/n)(y1+y2+…+yn);(3*)

Это и есть формулы прямоугольников. Их две, так как можно использовать два способа замены подынтегральной функции. Если f(x)- положительная и возрастающая функция, то формула (3) выражает S фигуры, расположенной под графиком, составленной из входящих прямоугольников, а формула (3*)- площадь ступенчатой фигуры, расположенной под графиком функции составленной из выходящих треугольников.

Ошибка, совершаемая при вычислении интегралов по формуле прямоугольников, будет тем меньше, чем больше число n (то есть чем меньше шаг деления). Для вычисления погрешности этого метода используется формула: Pnp=, где  Результат полученный по формуле (3) заведомо даёт большую площадь прямоугольника, так же по формуле (3*) даёт заведомо меньшую площадь, для получения среднего результата используется формула средних прямоугольников: (3**)

2.Формула трапеций.

Возьмём определённый интеграл ∫f(x)dx, где f(x)- непрерывная подынтегральная функция, которую мы для наглядности будем предполагать положительной. При вычислении интеграла с помощью формулы трапеций подынтегральная функция f заменяется функцией, график которой представляет собой ломанную линию (на рисунке 2 красным цветом), звенья которой соединяют концы ординат yi-1 и yi (i=1,2,…,n).Тогда площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x), а значит (следуя из геометрического смысла), и значение нужного нам интеграла, приблизительно равна сумме площадей обычных трапеций с основаниями yi-1 и yi и высотой h=(b-a)/n, так как (если более привычно выражать для нас) h это Δx,a Δx=(b-a)/n при делении отрезка на n равных отрезков при помощи точек x0=a<x1<…<xn=b. Прямые x=xk разбивают криволинейную трапецию на n полосок. Принимая каждую из этих полосок за обыкновенную трапецию, получаем, что площадь криволинейной трапеции приблизительно равна сумме обыкновенных трапеций.

Площадь крайней полоски слева, как помниться из школьного курса геометрии, равна произведению полусуммы основания на высоту.

S=

Итак, запишем сказанное выше в математическом виде:

 (4)

 

Формула (4) и есть формула трапеций


Для определения погрешности интеграла вычисленного с помощью формулы трапеций используется формула: где

 

3.Формула Симпсона (формула парабол).

Существует два подхода к формуле Симпсона. В одном используется парабола в другом нет.

А) с использованием параболы.

Разделим отрезок [a;b] на чётное число равных частей n=2m. Площадь криволинейной трапеции, соответствующей первым двум отрезкам [x0,x1], [x1,x2] и ограниченной заданной кривой y=f(x), заменим площадью криволинейной трапеции, которая ограничена параболой второй степени, проходящей через три точки M0[x0,y0], M1[x1,y1], M2[x2,y2] и имеющей ось, параллельную оси Oy (рис). Такую криволинейную трапецию будем называть параболической трапецией.

Уравнение параболы с осью, параллельной оси Oy, имеет вид: .

Коэффициенты A, B и C однозначно определяются из условия, что парабола проходит через три заданные точки. Аналогичные параболы строятся и для других пар отрезков. Сумма параболических трапеций и даст приближённое значение интеграла. Сначала вычислим площадь одной параболической трапеции. Для этого докажем лемму.

Лемма: если криволинейная трапеция ограничена параболой , осью Ox и двумя ординатами, расстояние между которыми равно 2h, то её площадь равна:  (5), где y0 и y2- крайние ординаты, а y1- ордината кривой в середине отрезка.

Доказательство:

Расположим вспомогательную систему координат так, как показано на рис. Коэффициент в уравнение параболы  определяются из следующих уравнений:

Если x0=-h, то

Если x1=0, то (6)

Если x2=-h, то

 Считая коэффициенты A. B, C известными определим площадь параболической трапеции с помощью определённого интеграла:

  

из равенства (6) следует, что

следовательно: ч.т.д. пользуясь формулой (5), можно написать приближённые равенства, учитывая, что  

 

складывая левые и правые части, получим слева искомый интеграл, справа его приближённое значение:

или

(7)

Это и есть формула Симпсона. Здесь число точек деления произвольно, но чем это число больше, тем точнее сумма в правой части равенства (6) даёт значение интеграла. Формула Симпсона даёт самое точное значение интеграла (из классических формул приближённого интегрирования), погрешность для этого метода находится по формуле:  где

Б) Без использования парабол

В тех случаях, когда линия y=f(x) между x=a и x=b мало изогнута, интеграл  приближенно выражается достаточно простой формулой. Будем считать f(x) положительной и искать площадь криволинейной трапеции aABb. Для этого разделим отрезок [a;b] точкой  пополам и в точке c(c,f(c))проведём касательную к линии y=f(x). После этого разделим [a,b] точками p и g на 3 равные части и проведём через них прямые x=p и x=q. P и Q – точки пересечения прямых с касательной. Соединив AP и BQ, получим 3 прямолинейные трапеции aAPp, pPQq, qQBb. Сумма площадей этих трапеций равна будет примерно равна площади криволинейной трапеции aABb:

Обозначим: Aa, Pp, qQ, bB – основания трапеций;

- высота трапеций, в данном случае число n строго задано n=3

Получаем:

(8)

Обозначим, что: aA=f(a)=ya, bB=f(b)=yb. Отрезки pP и qQ не являются ординатами точек линии y=f(x), так как P и Q лежат на касательной. Но нам нужна сумма этих отрезков, которая выражается через среднюю линию трапеции и равна полусумме её оснований, откуда . Значит . Формула (8) принимает вид:

(9). Эта формула называется малой формулой Симпсона.

Малая формула Симпсона пригодна, когда график подынтегральной функции мало изогнут, например для случая, изображённого на рисунке, применять малую формулу уже нельзя, так как она даёт значение 0 на [a,b]. Но если отрезок [a,b] разбить на части [a,c] и [c,b] и к каждому из них применить формулу (9), то получится приемлемый результат.

Эта идея лежит в основе вывода «большой» формулы Симпсона.

Для вычисления интеграла  выберем какое-либо чётное число и разложим [a,b] на n равных частей точками . Интеграл представим в виде суммы . К каждому слагаемому справа применим малую формулу Симпсона. Учитывая, что в каждом интеграле длина промежутка интегрирования , и положить , то получим:

 

Раскроем скобки:

Это и есть «большая формула Симпсона». Её точность, также как и у всех формул рассмотренных выше, тем выше, чем больше n. Эта формула совпадает с формулой (7), выведенной с помощью парабол. Для оценки погрешности формулы Симпсона используется формула:

Качество этой формулы лучше, чем формулы трапеции и прямоугольников, так как при одном и том же n она даёт большую точность.


ПРАКТИКА

Общий вид интеграла, решение которого, будет рассмотрено в этом разделе:

Заданные значения:

a=0; c=0,3; m=2; b=3; k=7.

Подставим заданные значения:

.
Сначала, решим искомый интеграл напрямую, основываясь на полученные ранее знания.

Применим метод замены:

Разделим отрезок [0;3] на n=10 равных частей и найдём шаг деления:

Найдём значение подынтегральной функции:

X Y
0 0
0,3 0,289
0,6 1,007
0,9 2,199
1,2 3,866
1,5 6,009
1,8 8,628
2,1 11,724
2,4 15,296
2,7 19,344
3 23,868

ФОРМУЛА ПРЯМОУГОЛЬНИКОВ:

1.Входящих

2.Выходящих

3.Средних

X Y
0,15 0,101458
0,45 0,58974
0,75 1,543889
1,05 2,973095
1,35 4,878247
1,65 7,259531
1,95 10,11701
2,25 13,45069
2,55 17,2606
2,85 21,54674

 

Определим погрешность метода прямоугольников:

Pnp=

М2 – максимальное значение второй производной на данном промежутке.

 

ФОРМУЛА ТРАПЕЦИЙ

Определим погрешность метода трапеции:

М2 – максимальное значение второй производной на данном промежутке.

 

ФОРМУЛА СИМПСОНА

Определить погрешность метода Симпсона:

М4 – максимальное значение четвёртой производной на данном промежутке.


ЗАКЛЮЧЕНИЕ

В завершении работы, хочется отметить ряд особенностей применения рассмотренных выше методов. Каждый способ приближённого решения определённого интеграла имеет свои преимущества и недостатки, в зависимости от поставленной задачи следует использовать конкретные методы. Если необходимо быстро получить решение, но нет необходимости в большой точности ответа, следует воспользоваться одним из методов прямоугольника. Если же необходимо получить наиболее точный результат, идеально подходит метод Симпсона. Метод трапеций даёт ответ более точный, чем метод прямоугольников, но методу Симпсона он сильно уступает, этот метод можно назвать «золотой серединой» между двумя другими.

СПИСОК ЛИТЕРАТУРЫ

1.   И.П. Натансон : Краткий курс высшей математики

2.   И.И. Валуцэ, Г.Д. Дилигун : Математика для техникумов

3.   И.А. Сахарников : Высшая математика

4.   П.П. Коровнин : Математический анализ

5.   Л.И.Лихтарников, А.Н. Поволоцкий : основы математического анализа


Информация о работе «Численное интегрирование определённых интегралов»
Раздел: Математика
Количество знаков с пробелами: 15012
Количество таблиц: 2
Количество изображений: 23

Похожие работы

Скачать
9094
0
5

... значения интеграла, основан на «монотонности» интеграла. При этом способе подынтегральную функцию приближают снизу и сверху интегрируемыми в замкнутом виде функциями  и , т.е. , (34) Тогда (35) 5. Вычисление интегралов методом Монте-Карло Пусть нам нужно вычислить интеграл: (36) В случае, когда методы Ньютона-Котеса и Гаусса работают плохо, приходится обращаться к вероятностным ...

Скачать
7862
0
2

... сегмента  равна , мы получим формулу прямоугольников (1), в которой Здесь . Мы воспользовались формулой, доказанной в утверждении, для функции                 Примеры вычисления определённых интегралов по формуле прямоугольников.   Для примеров возьмём интегралы, которые вычислим сначала по формуле Ньютона-Лейбница, а затем по формуле прямоугольников. П р и м е р 1. ...

Скачать
23991
0
2

... . Также мы получим графическое отображение процесса интегрирования на участках возрастания и убывания функции.   2. Выбор математической модели задачи Кратко рассмотрим основные методы численного интегрирования и выясним почему метод Гаусса наиболее подходит для решения нашей задачи.   2.1 Метод прямоугольников Метод прямоугольников получается при замене подынтегральной функции на ...

Скачать
8571
1
2

... – границы интервалов интегрирования; и - коэффициенты значения которых определяются величиной m. Для m=3 A1=5/9, A2=8/9, A3=5/9, , t2=0, t3=-t1 Блок-схема программы. Блок-схема1: Функция вычисления интеграла. Блок-схема 2: Основная программа. Текст программы и результаты счета. program Kursovoy; const A1=5/9; A2=8/9; t=-0.77459;{константы ...

0 комментариев


Наверх