1. Линейные уравнения с одним неизвестным.

Этот класс уравнений — первый в курсе алгебры, поэтому от характера его изучения в значительной мере зависят особенности организации всего последующего изучения линии уравнений. При изучении этого класса уравнений, помимо его непосредственного выделения и описания, приходится останавливаться на вопросах, относящихся к формированию общего понятия об уравнении, вводить терминологию.

В § 2 были приведены различные взгляды на содержание понятия уравнения. Было отмечено, что каждый из них имеет определенную ценность в развертывании содержания курса алгебры. Поскольку рассматриваемый класс является первым в курсе, указанные взгляды тем или иным способом должны найти место на этом этапе изучения материала линии уравнений и неравенств.

Первая методическая задача, с которой учитель сталкивается, приступая к изложению этой темы, состоит в выделении формальной части понятия уравнений из той содержательной ситуации, в которой оно возникает. В качестве такой ситуации обычно выступает несложная текстовая задача, решение которой алгебраическим методом приводит к уравнению первой степени с одним неизвестным. Учителю следует обратить внимание учащихся на основной метод, примененный в решении задачи,— переход к ее алгебраической модели, общий вид которой f{x)=g(x), где f u g — некоторые выражения, содержащие неизвестное х. Далее, на основе анализа конкретно полученной формулы учитель приводит формулировку общего понятия уравнения, принятую в учебнике, и вводит (или напоминает) связанные с ним термины. Вслед за этим нужно обратить внимание на те формальные характеристики составленного уравнения, которые уже непосредственно приводят к описанию изучаемого конкретного класса уравнений.

В различных учебниках применяется разная терминология, относящаяся, по существу, к одному и тому же классу уравнений. В этом отношении необходимо быть чрезвычайно внимательным и употреблять только те термины, которые введены в учебнике, причем именно в том смысле, который им придается.

Опишем несколько подходов к выделению первого изучаемого в курсе алгебры класса уравнений.

В учебнике для для 6 класса средней школы Макарычева это линейные уравнения с одной переменной, т. е. уравнения вида ах=b, где х — переменная, а и b — числа. Естественно, что это определение выделяет очень узкий класс уравнений, недостаточный для решения самых простых задач. Какую роль он выполняет? Это роль двоякая. Во-первых, уравнения этого класса просто решаются, причем так описанный класс допускает полное исследование (что и осуществляется в учебнике). Во-вторых, запись уравнений из этого класса играет роль образца, к которому могут быть сведены посредством простейших преобразований уравнения более широкого класса. Большая часть времени, отводимого на изучение линейных уравнений по этому учебнику, используется именно на то, чтобы сформировать навыки сведения к линейным других уравнений, не входящих в этот класс.

В [20][2] вводится и рассматривается класс уравнений, названный по-иному — уравнения первой степени с одним неизвестным. К особенностям введения этого класса следует отнести то, что явного определения он не получает: определение заменяется описанием и иллюстрацией несколькими примерами. Предполагается, что в итоге их рассмотрения учащиеся получат достаточно ясное представление об объеме понятия. Основное внимание уделяется изложению правил последовательного преобразования уравнения ко все более простому виду. Фактически при этом приходят к уравнению ах=b. Этот последний класс уравнений явно не выделяется, но на примерах рассматриваются все возможные случаи решения уравнений из него. Такой подход позволяет сконцентрировать внимание непосредственно на алгоритмах решения уравнений.

В [159][3] также вводится понятие уравнения первой степени с одним неизвестным и объясняется алгоритм его решения. В отличие от [20] здесь дано явное определение: «Алгебраическое уравнение от одного неизвестного называется уравнением первой степени, если обе его части являются многочленами первой степени относительно неизвестного». По поводу этого определения следует сказать, что по смыслу понятия степени многочлена, введенного в этом учебнике, оно относится к конкретной записи многочлена без приведения подобных членов; например, многочлен 2х+ 1 —(2х—3) — первой степени.

В [129][4] в системе изучения присутствуют оба понятия: и линейного уравнения с одним неизвестным, и уравнения первой степени. Первое из них описывает широкий класс уравнений (левая и правая части уравнения — нуль или многочлены не выше первой степени), а второе—более узкий (уравнение вида kx+b=0, k¹0).

Выделение подкласса уравнений первой степени в классе линейных уравнений в принципе может облегчить изложение этого класса. В частности, введение двух терминов (линейное уравнение, уравнение первой степени) позволяет четче описать сам процесс решения. Однако при этом возникает необходимость в усвоении двух, а не одного термина. Точно так же указание явного определения изучаемого понятия по сравнению с описанием имеет преимущество большей четкости, но предъявляет более высокие требования к развитию логического мышления учащихся.

Охарактеризованные четыре варианта изложения теории уравнений, имеющих вид ax + b == сх + d, свидетельствуют о том, что эта теория допускает несколько различных по стилю и методике изучения развертывании. Можно (как это сделано в первом и четвертом случаях) сконцентрировать внимание на выделении более узкого класса, играющего роль «канонического вида», к которому приводятся данные уравнения; но можно (как во втором и третьем случаях) обойтись и без этого, а сразу изучать способы решения уравнений общего класса, используя изученные типы преобразований уравнений. Точно так же можно с разной степенью выявленности описывать вводимые термины: четким определением или же посредством описания.

Несмотря на наличие таких разных подходов к введению первого класса уравнений, значительная часть методики его изучения одинакова при любом из них. Это объясняется прежде всего тем, что основной целью изучения в данном случае всегда является освоение правил решения уравнений данного класса, образующих сравнительно компактную систему и относящихся исключительно к преобразованиям буквенно-числовых выражений. В последнем отношении рассматриваемый класс сильно отличается от большинства других классов, в изучении которых определенную, а иногда значительную роль играют логические, графические, вычислительные компоненты.

При изучении этого класса уравнений учащиеся подходят к осознанию того, что уравнения, с первого взгляда мало отличные друг от друга, могут резко различаться по количеству корней. Это ответственный момент, один из самых существенных в изучении всего курса алгебры, поскольку при этом учащиеся впервые сталкиваются с необходимостью теоретического осмысления именно класса уравнений, а не каждого уравнения в отдельности.

Конкретные способы изложения материала, относящегося к исследованию, могут быть различными. Зависят они в первую очередь от стиля выделения этого класса. Если он выделяется явным определением, то и результаты исследования формулируются в виде четкой системы условий, при выполнении которых имеет место один из трех возможных случаев. Если же этот класс уравнений выделяется посредством описания, то реализация каждого из этих случаев показывается на примерах, но общего обоснования не дается.

Отметим еще, что рассматриваемый класс является единственным, для которого в современной методике есть разные подходы к проведению исследований. Для каждого из остальных классов уравнений, неравенств, систем исследование проводится, по существу, одинаково при любом построении курса алгебры. Именно те классы уравнений, неравенств, систем, алгоритмы решения которых заучиваются при усвоении материала, исследуются аналогично первому способу; для тех классов, где результирующих формул для получения ответа не указывается, используется второй способ.

В итоге тематического изучения первого класса уравнений учащиеся должны овладеть: алгоритмом решения уравнений данного класса; умением применять результаты исследования уравнений данного класса; основными понятиями общей теории уравнении;

применением уравнений данного класса к решению текстовых задач.


Информация о работе «Самостоятельная работа как средство обучения решению уравнений в 5-9 классах»
Раздел: Педагогика
Количество знаков с пробелами: 123013
Количество таблиц: 25
Количество изображений: 0

Похожие работы

Скачать
71353
14
13

... и практическое использование различных форм уроков математики Для того чтобы доказать или опровергнуть, что использование различных форм уроков способствует улучшению качества знаний школьников по теме "Квадратные уравнения", были разработаны и проведены разнообразные формы уроков в 8 классе МОУ “Иштеряковская средняя общеобразовательная школа". При изучении темы были выбраны такие формы ...

Скачать
46858
6
0

... , можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе. Объект исследования работы: процесс обучения математике. Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса. Контингент: учащиеся 8-го класса. Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе   1.1.  Из истории возникновения квадратных ...

Скачать
64790
20
18

... работа как прием обучения может входить почти во все методы обучения, воспитывать в учениках потребность самостоятельно добывать знания, умение творчески пользоваться объяснениями учителя, помощью товарищей, книгами, конспектами одна из важнейших целей нашей работы.ГЛАВА 2. ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИЙ ПРИЁМЫ И МЕТОДЫ   §1. Анализ программ и учебников   «Алгебра, 7», «Алгебра, ...

Скачать
87792
14
0

... работа оказывает значительное влияние на глубину и прочность знаний учащихся по предмету, на развитие их познавательных способностей, на темп усвоения нового материала. Практический опыт учителей многих школ показал, что: 1.   Систематически проводимая самостоятельная работа (с учебником по решению задач, выполнению наблюдений и опытов) при правильной ее организации способствует получению ...

0 комментариев


Наверх