2. Развивать вычислительные навыки, речь, мышление, память.

3. Воспитывать самостоятельность активность , трудолюбие, любовь к математике.

Оборудование: карточку ax+by>c.

Ход урока.

I.          Организационное начало урока.

-Здравствуйте, садитесь, сегодня урок алгебры проведу у вас я, зовут меня Елена Федоровна

II. Сообщение темы и цели.

-Сегодня, на уроке мы познакомимся с уравнениями нового вида - «Линейными уравнениями с двумя переменными».

III. Актуализация знаний учащихся.

-Посмотрите на доску. Какие из этих уравнений вам уже знакомы?

2+3х+5=0 5х+9=54

4х+9у=7 9(х2+6х+2)-8=30

x2/3+y2/2=1 4(х+2)+1=х+18.

-А как называются эти уравнения?

-Правильно это линейные уравнения с одной переменной.

-А кто скажет определение линейного уравнения с одной переменной?

-Уравнение вида ах=в, в котором x- переменная, а а и в – некоторые числа , называется линейным уравнением с одной переменной.

-Откройте учебники на стр. 27 , прочитайте это определение. Повтори…

-Приведите примеры линейных уравнений с одной переменной.

-Посмотрите на доску, перед вами линейные уравнения. Давайте вспомним как они решаются.

-Откройте тетради, запишите число, классная работа, тема: «Линейные уравнения с двумя переменными.»

-Все решают уравнения в тетрадях, а Оля пойдет к доске и решит с подробным объяснением первое уравнение:

2х+6=10

(Перенесем слагаемое без х в правую часть уравнения, изменив при этом его знак на противоположный: 2х=10-6 , вычислим результат 2х=4. Разделим обе части уравнения на 2, получим х=2).

-Молодец. Садись.

-Второе уравнение пойдет решать Саша.

2(х+3)+4=х-1.

(Раскроем скобки, для этого умножим 2 на каждое слагаемое суммы (х+3), получим 2х+6+4=х-1. Перенесем слагаемые, содержащие х в левую часть уравнения, а не содержащие х – в правую часть, изменив при этом знаки на противоположные.

2х-х= -6-4-1.

Приведем подобные слагаемые : х= - 11.

-     Ребята , такие уравнения вы хорошо умеете решать.

-     А какие свойства применяли при решении этих уравнений? (Если в уравнении слагаемое перенести из одной части в другую, изменив его знак , то получится уравнение, равносильное данному.)

-     А какое еще свойство вы применяли? (Если разделить или умножить обе части уравнения на одно и тоже отличное от нуля число, то получится уравнение равносильное данному.)

IV. Изучение нового материала.

-Ребята, а сегодня мы познакомимся с уравнениями нового вида.

-Пусть известно , что одно их двух чисел на 5 больше другого. Если первое число обозначить буквой х, а второе буквой у, то соотношение между ними можно записать в виде равенства х-у=5, содержащего 2 переменные. Такие уравнения называются уравнениями с двумя переменными или уравнениями с двумя неизвестными.

-Уравнениями с двумя переменными также являются уравнения:

5х+2у=10, -7х+у=5, х22=20 , ху=12 (запись на доске).

-Из этих уравнений первые два имеют вид ах+ву=с, где а, в, с – числа. Такие уравнения называются линейными уравнениями с двумя переменными.

-Итак: Линейным уравнением с двумя переменными называется уравнение вида ах+ву=с где х и у – переменные, а, в, с, - некоторые числа .

-Откройте учебники на странице 188.Прочитайте определение про себя.

-Теперь прочитайте вслух.

-А кто из вас повторит его ?

-уравнение х-у=5, при х=8, у=3. Обращается в верное равенство 8-3=5. Говорят, что пара значений переменных х=8, у=3 является решением этого уравнения. Записываю на доске:

х-у=5, х=8, у=3

8-3=5 - верное равенство.

Определение: Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

-Прочитайте это определение на странице 188 про себя.

-Прочитайте его вслух.

-Кто повторит? Повтори…

-А какие еще пары чисел будут являться решениями уравнения х-у=5? (х=105, у=100; х=4, у= -1,…)

-Правильно решениями этого уравнения будут являться числа, разность которых равно 5.

-Иногда пары значений переменных записывают короче: (105; 100), (4;- 1). ( Запись на доске).

-При такой записи необходимо знать, значение какой из переменных стоит на первом месте, а какой – на втором.

-в записи решений уравнения с переменными х и у на первом месте записывают значения х, а на втором – значение у.

-Уравнения с двумя переменными имеющие одни и те же решения, называют равносильными. уравнения с двумя переменными, не имеющие решений, также считают равносильными.

-Ребята, при решении линейных уравнений с одной переменной мы вспомним их свойства.

-Линейные уравнения с двумя переменными обладают такими же свойствами.

-Откройте учебники на стр. 189. Прочитайте эти свойства про себя.

-А теперь Таня , прочитай вслух. Повтори свойства.

-Рассмотрим уравнения 5х+2у=12.

-Воспользовались свойствами уравнений, выразим из этого уравнения одну переменную через другую , например у, через х. Для этого перенесем слагаемое 5х в правую часть уравнения изменив его знак.

2у= -5х+12.

-Разделим обе части этого уравнения на 2:

у= -2,5х+6

Уравнения 5х+2у=12 и

у= -2,5х+6 – равносильны.

-Пользуясь формулой у=2,5х+6, можно найти сколько угодно решений уравнения 5х+2у=12. Для этого достаточно взять произвольное х и вычислить соответствующее ему значение у.

Например: если х=2 , то у= -2,5.2+6=1.

если х=0,4 то у= -2,5*0,4+4=5.

Пары чисел (2; 1), (0,4; 5) – решение уравнения 5х+2у=12.

Это уравнение имеет бесконечно много решений.

V .Первичное закрепление.

-Что же называется линейным уравнением с двумя переменными?

-Выполним № 1092 на странице 190 устно.

-Прочитай задание.

-Является ли первое уравнение 3х-у=17 линейным? (Да).

-Почему? (Т.к. имеет вид ах+ву=с)

-А второе упражнение? (Нет).

-Почему? (Т.к. уравнение х2- 2у=5 не приводится к виду ах+ву=с, х имеет показатель степени 2).

(Далее аналогично).

-А теперь запишите № 1094.

-Читай задание .

-Как ответить на этот вопрос? (Поставить значение х и у в уравнение. Если получится верное равенство, то х и у является решением уравнения)

-Все решайте в тетрадях, а……. у доски.

х + у=6

6=6 – верное равенство.

Ответ: да.

-А какие еще числа могут быть решениями этого уравнения х+у=6. (Дающие в сумме 6: 4 и 2, 3 и 3 и т.д.).

-Запишите любые 2 решения этого уравнения.

-Не забывайте, что значение х пишется на первом месте а у – на втором месте.

Самостоятельная работа.

-А теперь выполним № 1096. запишите.

-Прочитай задание.

-Что нужно сделать, чтобы ответить на вопрос? (Подставить значения х и у в уравнение и посмотреть, получится ли верное равенство).

а) .Организация самостоятельной работы.

-Все решают в тетрадях, а к доске пойдут Лена и Оля.

-Саша проверит первые 2 пары, а Катя вторые 2 пары.

-А потом проверим.

б) Проведение самостоятельной работы.

(3; 1 ) (0; 10)

3*3+1>10 3*0+10=10.

10=10 – верное равенство 10=10 верное равенство

Ответ: является Ответ: является

(2; 4) (3; 2,5)

3*2+4=10 3*3+2.5=10

10=10 – верное равенство 11,5=10 – неверное равенство

Ответ: является Ответ: не является.

в) Проверка самостоятельной работы.

-Давайте проверим правильно ли выполнила Оля.

-У кого другой ответ?

-А Лена?

-У кого другой ответ?

-Молодцы. Садитесь.

-А теперь выполним № 1099.

-Прочитай задание.

-Что нужно сделать, чтобы выразить у через х? (Представить, что х известное число и найти у )

-Пойди к доске реши с объяснением, а все решают в тетрадях.

4х-3у=12.

(Одночлен 3у является неизвестным вычитаемым. Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность 3у=4х-12 .

Разделим обе части уравнения на 3, получим:

-Молодец. Садись.

А теперь выполним пункт б, Сережа иди к доске.

4х-3у=12.

(Одночлен 4х является неизвестным уменьшаемым, чтобы его найти, надо к разности прибавить вычитаемое: 4х=12+3у. Разделим обе части уравнения на 4 и получим:  

-Правильно. Молодец. Садись .

VI. Подведение итогов.

-Какой вид имеет линейное уравнение с двумя переменными ? (ах+ву=с).

-Что называется решением линейного уравнения с двумя переменными ?

-Приведите примеры таких уравнений.

-Какими свойствами обладают уравнения с двумя переменными?

2 К тренировочным относятся задания на распознавание различных объектов и их свойств. Тренировочные самостоятельные работы состоят из однотипных заданий, содержащих существенные признаки и свойства данного определения, правила. Конечно, эта работа мало способствует умственному развитию детей, но она необходима, так как позволяет выработать основные умения и навыки и тем самым создать базу для дальнейшего изучения математики.

При выполнении тренировочных самостоятельных работ учащимся еще необходима помощь учителя. Можно разрешить пользоваться и учебником, и записями в тетрадях, таблицами и т. п. Все это создает благоприятный климат для слабых учащихся. В таких условиях они очень легко включаются в работу и выполняют ее.

Тема:

Решение текстовых задач при помощи систем уравнений, содержащих уравнения второй степени.

 

Цель:

Расширение и углубление знаний, формирование умений решать системы, повышенной сложности, уметь составлять системы по условию задачи:

Развивать устойчивый интерес к предмету, умение самостоятельно работать;

Воспитывать умение осуществлять индивидуальную мыслительную деятельность;

Оборудование:

Учебник, «сборники заданий по математике» Кузнецов Л. В.;

Ход урока:

 

I.          Организационное начало урока:

II.        Сообщение темы и цели: - Сегодня на уроке продолжим решать системы уравнений, но будем учиться сами составлять по задаче систему.

III.      Актуализация знаний учащихся: - Запишите число, тему.

 

1)   выразить одну неизвестную через другую:

 

1. 3х-у=3

-у=3-3х

у=3х-3

2. у+2х=2

2х=2-у

2)   решить систему методом подстановки:

 

- Повторим алгоритм. Решим:

Решим квадратное уравнение:

 

или

 

или

 

Ответ: (4; -14); (-1; 1)

IV.      Закрепление

№ 498

-Прочтите задачу

-Как обозначим числа? (х, у)

-Если сумма? (х+у=18)

-Произведение чисел? (х*у=65)

-Найти что? (эти числа)

-Какую систему получим?

-Каким методом будем решать?

(записать пояснение: Пусть первое число – х и т. д.)

-К доске пойдет….

Решим квадратное уравнение:

Ответ: числа 5 и 13.

№504

-Прочтите условие.

-Какой формы участок? (Прямоугольной)

-Пусть длина – х, ширина – у.

-Площадь прямоугольника? (S=ав)

-Нужно перевести в одну единицу измерения: км. в м., га. в м2;

-Если участок прямоугольной формы, то какое уравнение составим?

(2(х+у)=1000)

-Площадь участка 60000 м2? (ху=60000)

-Запишем условие к задаче:

Пусть длина участка – х, ширина – у. Так как участок надо огородить забором длиной 1000м. Так как площадь участка 60000 м2, то составим уравнение: ху=60000. Получим систему:

Þ

Ответ: длина – 300м., ширина – 200м.

№ 1

-Послушайте условие:

«Одно из двух положительных чисел на 3 больше другого. Найдите эти числа, если их произведение равно 70?»

-Пусть числа х и у.

-Если известно, что одно больше на 3. Как запишем? (х=у+3)

-Произведение чисел? (ху=70)

-Составим систему:

Решим квадратное уравнение:

так как числа положительные, то 10 и 7.

Ответ: 10 и 7.

2) самостоятельная работа. (15 мин.)

-У вас на партах лежат сборники заданий и у каждого номер индивидуального задания.

-Запишите: «Самостоятельная работа»., стр… №….

1.

С. 15, в-1, № 3

С. 11, в-1, №4

2.

С. 20, в-1, № 5

С. 19, в-1, №4

3.

С. 28, в-1, № 6

С. 11, в-1, №4

4

С. 35, в-1, № 3

С. 19, в-1, №4

5.

С. 48, в-1, № 6

С. 19, в-1, №4

6

С. 21, в-1, № 6

С. 19, в-2, №4

7.

С. 15, в-2, № 3

С. 11, в-2, №4

8.

С. 20, в-2, № 5

С. 19, в-2, №4

9.

С. 28, в-2, № 6

С. 11, в-2, №4

10.

С. 35, в-2, № 3

С. 19, в-2, №4

11.

С. 48, в-2, № 6

С. 19, в-2, №4

12.

С. 21, в-2, № 6

С. 11, в-1, №4

13.

С. 29, в-1, № 4

С. 11, в-1, №4

14.

С. 29, в-2, № 4

С. 11, в-1, №4

15.

С. 30, в-2, № 6

С. 11, в-2, №4

16.

С. 31, в-2, № 6

С. 19, в-1, №4

17.

С. 30, в-1, № 6

С. 19, в-2, №4

18.

С. 31, в-1, № 6

С. 11, в-1, №4

-Оцениваться будут каждое задание отдельно.

Ответы

1.

1) (-5; 2); (2; -5)

10.

1) (5; -3); (-3; 5)

2.

1) (-2; 1); (1; -2)

11.

1) (1; -3); (3; -1)

3.

1) (5; -3); (-3; 5)

12.

1) (-7; 11); (3; 1)

4.

1) (8; 4); (4; 8)

13.

1) (7; 6); (-3; -4)

5.

1) (2; -4); (4; -2)

14.

1) (-7; -9); (3; 1)

6.

1) (-7; 9); (4; -2)

15.

1) (-3; 7); (2; 2)

7.

1) (-3; 4); (-4; 3)

16.

1) (2; 4); (4; 2)

8.

1) (2; 3); (3; 2)

17.

1) (-2; -3); (1; 0)

9.

1) (-2; 7); (7; -2)

18.

1) (6; -4); (-4; 6)

 

V. Подведение итогов:

-сколько существует способов решения систем уравнений?

-сдайте тетради.


3 К закрепляющим можно отнести самостоятельные работы, которые способствуют развитию логического мышления и требуют комбинированного применения различных правил и теорем. Они показывают, насколько прочно, осмысленно усвоен учебный материал. По результатам проверки заданий данного вида учитель определяет, нужно ли еще заниматься данной темой.

 

Тема: Графический способ решения уравнений.

Цель: добиться осознанного усвоения и запоминания графического

способа решения уравнений, сформировать практические умения и навыки;

Воспитывать аккуратность ;

Развивать наглядные представления;

Оборудование: табличка «абсцисса», таблица с графиками.

Ход урока.

I. Организационное начало.

а) Приветствие

б) Проверка готовности рабочих мест.

II.        Сообщение темы и цели.

- Сегодня мы с вами научимся решать уравнения с помощью графиков.

III.      Актуализация знаний учащихся.


Информация о работе «Самостоятельная работа как средство обучения решению уравнений в 5-9 классах»
Раздел: Педагогика
Количество знаков с пробелами: 123013
Количество таблиц: 25
Количество изображений: 0

Похожие работы

Скачать
71353
14
13

... и практическое использование различных форм уроков математики Для того чтобы доказать или опровергнуть, что использование различных форм уроков способствует улучшению качества знаний школьников по теме "Квадратные уравнения", были разработаны и проведены разнообразные формы уроков в 8 классе МОУ “Иштеряковская средняя общеобразовательная школа". При изучении темы были выбраны такие формы ...

Скачать
46858
6
0

... , можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе. Объект исследования работы: процесс обучения математике. Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса. Контингент: учащиеся 8-го класса. Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе   1.1.  Из истории возникновения квадратных ...

Скачать
64790
20
18

... работа как прием обучения может входить почти во все методы обучения, воспитывать в учениках потребность самостоятельно добывать знания, умение творчески пользоваться объяснениями учителя, помощью товарищей, книгами, конспектами одна из важнейших целей нашей работы.ГЛАВА 2. ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИЙ ПРИЁМЫ И МЕТОДЫ   §1. Анализ программ и учебников   «Алгебра, 7», «Алгебра, ...

Скачать
87792
14
0

... работа оказывает значительное влияние на глубину и прочность знаний учащихся по предмету, на развитие их познавательных способностей, на темп усвоения нового материала. Практический опыт учителей многих школ показал, что: 1.   Систематически проводимая самостоятельная работа (с учебником по решению задач, выполнению наблюдений и опытов) при правильной ее организации способствует получению ...

0 комментариев


Наверх