2. Если х > у ,а |х < |у
Например, 190 - 52 = 138
____ ___ ____
|190 = 1, |52 = 7 Разница натуральных корней 1 - 7 = -6, но натуральный корень разницы |138 = 3.
Для приведения этого неравенства к виду равенства достаточно заменить больший натуральный корень числа у на соответствующее ему в эманационном ряду числа у отрицательное значение.
Например, заменим натуральный корень 52, равный 7, на соответствующий корень, равный -2. Тогда разница натуральных корней для выражения 190 - 52 = 138 будет 1 - (-2) = 3.
Для удобства можно эту операцию производить только для натурального корня разницы. Например, замена
____
натурального корня разницы |138 = 3 на соответствующее значение натурального корня, равное -6, приведет нас к равенству 1 - 7 = -6.
__ __
Таким образом, при условии |х < |у для выражения х - у = z разница натуральных корней вычитаемых чисел х и у равна натуральному корню из их разницы при применении соответствующих отрицательных эманаций числа у или числа z.
__ __
3. Если х < у, а |х > |у
Например.
52 - 190 = -138
____ ____
|52 = 7, |190 = 1 Разница натуральных корней 7 - 1 = 6,
_____
но |-138 = -3. При применении принципа замены натурального корня на соответствующее ему противоположное значение равенство действительно. Так, при замене -3 на 6 уравнение верно.
Необходимо отметить свойство эманаций нуля в операции вычитания.
___
Если в выражении х - у = z |у = 0, то натуральный корень разницы z, будет равен натуральному корню числа х, т.е. не изменится, что указывает на проявление эманациями нуля в операции вычитания свойств нуля.
Например. Найдем разницу 155 - 72 = 83
____ ____ ____
2|155 - 0 |72 = 2 |83
__ __
4. Если х < у и |х < |у
Например.
____ ____ ____
5|77 - 8 |98 = -3 |-21
Таким образом, для данного условия верно утверждение, что разница натуральных корней вычитаемых чисел равна натуральному корню их разницы.
3.3.УМНОЖЕНИЕ.
Пример. Умножить чмсла 154 и 32 и их натуральные корни:
154 * 32 = 4928
_____ ___
|154 = 1 и |32 = 5;
Перемножим корни:
______ _____ ____ ______
5 * 1 = 5 и 5|4928 , т.е.1 |154 * 5 |32 = 5 |4928 .
Пример. Умножить числа 27 и 85 и их натуральные корни.
27 * 85 = 2295.
___
|85 = 4.
3
Число 270 является третьей эманацией 0, т.е. Э = 27.
_____
Но и число 2295 является эманацией 0, только 255-ой. => 27 * 85 = 0|2295.
Очевидно, что эманации нуля проявляют его свойства при их умножении на другие числа, т.е. в результате умножения дают нуль.
Свойство. Натуральный корень из произведения, одним из множителей которого является эманация нуля, всегда будет равен нулю.
р k n
Эо * Эm = Э о
Закон умножения натуральных корней. Натуральный корень произведения множителей равен произведению натуральных корней этих множителей.
___ ___ _______
n |х * k|у = n*k |x*у
3.4. Деление.
1. Деление эманаций натурального корня n на число у.
Чтобы выяснить, какие эманации натурального корня n делятся без остатка на число у, необходимо выяснить номер эманации числа, которое первым в эманационном ряду натурального корня n делится без остатка на число у.
Обозначим этот номер эманации через N.
Например, в эманационном ряду натурального корня n=2: 2,11,20,29, 38,47,56 на число у=19 первой делится эманация 38 с номером эманации N = 4.
На число у без остатка будут делиться эманации натурального корня n, номер эманации которых равен
Nэ = N + ау, где а - любое целое число, т.е. эманации вида Эх = 9(N + ау) + х.
Например. Выясним, какие эманации n=1 без остатка делятся на число 4. Номер эманации n=1, которая первой делится на число 4 без остатка N = 3, соответствующий числу 28. Таким образом на 4 без остатка будут делиться все эманации единицы вида:
Э1 = 9(3 + а4) + 1 = 28 + 36а.
Если а = 2, то Э = 9(3 + 2*4) + 1 = 100.
Число 100 действительно без остатка делится на 4, т.к. 100 : 4 = 25.
Для определения эманации числа х, которая первой делится на число у, введем равенство а = 0.
Правило 2. При делении последовательно-возрастающих эманаций натурального корня n на число у, получаемые в результате деления числа будут являться членами некоторого эманационного ряда числа z.
Таким образом, число а в указанной выше формуле показывает номер эманации частного.
Например. Выясним, какие эманации числа 7 будут делиться на число 13. Номер эманации первого деления
N = 5.
Тогда на число 13 без остатка будут делиться эманации числа 7 вида Э7 = 9(5 + а13) + 7.
При а = 0 Э7 = 9(5 + 0*13) + 7 = 52, 52 : 13 = 4,
при а = 1 Э7 = 9(5 + 1*13) + 7 = 169, 169 : 13 = 13,
при а =2 Э7 = 9(5 + 2*13) + 7 = 286, 286 : 13 = 22.
В результате такого деления мы получили эманационный ряд числа 4: числа 4, 13,22.
... мест. Методы Коши получили всеобщее распрастранение, применялись оттачивались весь XIX век. Идеи и методы Коши плодотворно пользуются и обобщаются современными математиками и сегодня. 4 Создание теории действительного числа После «наведения порядка» в математическом анализе встал вопрос о ситуации в арифметике. «К необходимости разработки теории действительных чисел приводили многие задачи ...
... из которых мультипликативна по лемме 2 пункта 13. Значит, ( a ) - мультипликативна. Следствие 3. . Доказательство. Пусть . Тогда, по лемме 1 пункта 13 имеем: . 5 Китайская теорема об остатках В этом пункте детально рассмотрим только сравнения первой степени вида ax b(mod m), оставив более высокие степени на съедение следующим ...
... получаются экспериментальная и теоретическая зависимости P (j, l), сходимость которых проверяется по известным критериям, причем проверку целесообразно проводить при разных значениях l и р, 0 < р < 1. 7. Генератор случайных чисел в Borland C++ В языке C, как и во многих других языках высокого уровня, существует встроенная поддержка генератора случайных чисел. Для формирования чисел ...
... предшественников, накопленного в течении тысячелетий, что свидетельствует об интенсивности, динамизме их математического познания. Качественное отличие исследований Фалеса и его последователей от догреческой математики проявляется не столько в конкретном содержании исследованной зависимости, сколько в новом способе математического мышления. Исходный материал греки взяли у предшественников, но ...
0 комментариев