4.2.1. Взаимосвязь размерности вектора признаков и эффективности СР


Из предположений, возникающих в связи с приведенным следствием изучения вопроса уменьшения числа классов, можно заключить, что увеличение числа признаков должно приводить к повышению эффективности СР, так как рано или поздно в составе вектора может появиться такой признак, разброс которого минимален. Это качественное утверждение является достаточно важным в построении систем распознавания и поэтому требует строгого доказательства.

Итак, докажем, что с увеличением числа признаков вероятность правильного распознавания неизвестных объектов также увеличивается.

Рассмотрим такое доказательство, допуская, что

- для каждого k-го признака распознавания существует некоторая вероятность такого события Ak, когда решение о принадлежности объектов к Wi классу принимается однозначно.

-признаки распознавания независимы между собой.

Независимость признаков означает и независимость событий Ak (событий принятия однозначных решений о принадлежности).

Обратимся к теории вероятностей. Вероятность наступления двух совместных или несовместных событий A1 и A2


P (A1 + A2 ) = P (A1 ) + P (A2 ) - P (A1 A2 )


Отсюда для трех событий получим


P (A1 + A2 + A3 ) = P [A1+ (A2 + A3 )] = P (A1 ) + P (A2 + A3 ) - P [A1 (A2 + A3 )] = P (A1 ) + P (A2 ) + P (A3 ) - P (A2A3 ) - P (A1A2 + A1A3 ) =

=P (A1 ) + P (A2 ) + P (A3 ) - P (A2 A3 ) -[ P(A1A2 ) + P (A1A3 ) - P (A1A2A3 )]


или



Точно также для четырех событий


Теперь образуем разность между вероятностями суммы 4-х и 3-х событий, состоящих в рассматриваемом нами случае в принятии однозначного решения о принадлежности по 4-м и 3-м признакам распознавания соответственно:

=


(Наиболее просто эту разность получить, не доводя уменьшаемое до конечного вида

Теперь по индукции можно записать:


Из приведенного выражения следует, что если не достигнута предельная вероятность правильного распознавания, то есть:



то при любом n имеем



Это является доказательством возрастания вероятности при увеличении числа признаков.

Таким образом, последовательность



при является монотонно возрастающей, а значит и сходящейся, так как предел возрастания - “1”.


Для сходящейся последовательности

а значит

что и требовалось доказать.


Следствие:

Снижение эффективности распознавания за счет увеличения числа классов может быть скомпенсировано увеличением размерности вектора признаков.

Заметим, что мы вели доказательство для независимых признаков. В случае зависимых признаков (коррелированных) надежда на повышение эффективности основывается на наличии связей, приводящих к лучшей разделимости классов (Это можно показать на примере двумерного пространства признаков, которому соответствуют неперекрывающиеся эллипсы рассеяния).


4.2.2.Формализация задачи оптимального взаимосвязанного выбора алфавита классов и словаря признаков


Решая задачу повышения эффективности СР за счет увеличения размерности вектора признаков, мы не обращали внимания на то, что указанное увеличение - это часто возрастание числа технических средств измерений, каждое из которых обеспечивает определение одного или группы признаков. Значит при этом растут расходы на построение СР. А ресурсы часто ограничены.

Поэтому в условиях ограниченных ресурсов на создание СР только некоторый компромисс между размерами алфавита классов и объемом рабочего словаря признаков обеспечивает решение задачи оптимальным образом. Для обеспечения этого компромисса требуется предварительная формализация задачи. Начнем с общей формулировки задачи.


4.2.2.1. Формализация исходных данных


Пусть задано множество объектов или явлений


W ={w1 , w2 ,....,wl };


(например, W=самолеты, а w1 -пассажирский самолет Ту-154 , w2 - военно-транспортный самолет АН-12, w3 - истребитель МИГ-29 и т.д.).

Введем множество из r возможных вариантов разбиения этих объектов W на классы (варианты алфавита классов)


A ={A1, A2, ..., Ar}


(например, A1 - 2 класса - пассажирские, военные (m1 =2); A2 -5 классов - истребители, бомбардировщики, штурмовики, пассажирские, военно- транспортные (m2 =5) )


Таким образом, с учетом возможного отказа от решений в каждом варианте множество объектов W подразделяется на свое число классов:

в варианте A1 - на (m1 +1) классов;

в варианте A2 - на (m2 +1) классов;

...........................................................


в варианте Ar - на (mr +1) классов.


Иными словами здесь мы располагаем r алфавитами классов.

В соответствии с вариантом алфавита классов (As) исходные объекты (явления) разбиваются на ms "решающих" классов


W = {W(1/As ), W(2/As ), W(3/As ),....... , W(ms /As )},


где естественно "1", "2",..... - номера классов; As - вариант алфавита классов, где s=1,2,....,r.

Например:


W(1/As ) = {W1 ,W2 ,..Wk }; W(2/As ) = { Wk+1 ,Wk+2 ,..,Wl }


и т.д.

Таким образом, мы располагаем подмножествами классифицированных объектов.

Если при этом располагаем априорным словарем признаков

_

X = { x1 , x2 , ..., xn },

и притом размеры указанных подмножеств классифицированных объектов таковы, что соответствующие выборки признаков представительны (в каждом классе достаточное в статистическом смысле число объектов),то тогда тем или иным способом может быть проведено описание каждого из классов на языке этого словаря.

В детерминированном случае это достаточно просто. Каждый класс имеет свои эталоны со своими характеристиками как наборами параметров, представляющих собой признаки распознавания:


Xik [W(j/As )],

__

где i = 1,n - число признаков распознавания;

__

j = 1,m - число классов;

___

k = 1,Nэj - число эталонов в j-том классе.


При статистическом подходе (вероятностные признаки и вероятностная СР) описание это:


- априорные вероятности классов P[W(i/As )];

_

- функции условных ПРВ f{X/[W(i/As )]};


Если же объем выборок объектов по подмножествам недостаточен для непосредственного описания классов, то эти описания, как мы знаем, могут быть получены с помощью процедуры обучения.

Наличие описаний классов уже позволяет определять решающие правила (решающие границы), использование которых обеспечивает минимизацию ошибок при распознавании неизвестных объектов.

Если бы не было ограничений на величину ресурсов, ассигнуемых на построение СР, а именно на создание измерительных средств, предназначенных для определения признаков, то можно было бы считать, что как алфавит классов, так и словарь признаков определены и можно приступать к построению системы.

Реально при создании сложных систем не бывает без указанных ограничений. При этом, когда речь идет об ограничениях, это не обязательно финансовые ограничения. Достаточно часто в качестве таковых могут выступать ограничения на быстродействие, память и т.п.


4.2.2.2.Выигрыш распознавания и оптимизация алфавита классов и словаря признаков в условиях ограничений


В условиях ограничений на создание или использование средств измерений (а равно - средств получения признаков распознавания) оказывается естественной невозможность использования всех признаков. Поэтому для формирования рабочего словаря признаков вводится вектор, совпадающий по мощности с вектором признаков X:

_

V ={v1 ,v2 ,...,vn },

компоненты которого vj равны 1, если данный признак априорного словаря используется в рабочем и 0 в противном случае. Этот вектор носит название вектора отбора.

Располагая стоимостями измерения каждого j-го признака Сj , имеем общие затраты на реализацию априорного словаря признаков


Сапр =


Для рабочего словаря будем иметь

Сраб =


При наличии конкретной величины ассигнованных ресурсов (C0 ) на создание СР ограничения, о которых идет речь, формализуются в виде следующего неравенства


С0 >=

Если в конечном итоге интересоваться вектором отбора, то возникает следующая экстремальная задача:


в пределах выделенных ассигнований на создание СР (C0) еобходимо найти такое пространство признаков, при котором обеспечивается максимальное значение некоторого критерия эффективности СР.


Здесь речь идет не только о словаре признаков, но и об алфавите, учитывая выясненную связь между ними. Действительно, если мы будем уменьшать число признаков, то придется уменьшить и число классов.

Обращая внимание на тот факт, что без критерия эффективности такая задача не решается, введем его.

В соответствующей литературе приводится несколько требований, которыми следует руководствоваться при выборе показателя эффективности:


1) показатель эффективности должен характеризовать систему как единое целое.

2) показатель эффективности должен обеспечивать возможность получения количественной оценки с требуемой достоверностью.

3) область изменения показателя эффективности должна иметь четко очерченные границы.

На поверхности понимания стоящей перед нами задачи в качестве единого показателя для всей системы лежит вероятность правильного распознавания.

Однако, такой выбор несколько расходится с пониманием цели создания СР - выработкой управляющих решений. Поэтому и критерий должен характеризовать выигрыш, достигаемый от принятия решения как ответных действий на распознавание.

Составляющими такого выигрыша от применения СР являются частные выигрыши от отнесения неизвестного объекта к тому или иному классу.

Обозначим такую составляющую в i-ом классе s-ого варианта алфавита классов так:


Gs [W(i/As )].


Что же такое "выигрыш"? Что можно выиграть в управляющем решении?

Рассмотрим в общем виде два примера:


1) В экономике по результатам распознавания ситуации может быть принято такое решение, которое обеспечит максимальную прибыль. А может быть и такое решение, которое даст меньшую прибыль или вообще никакой, не говоря уже о возможных убытках. Поэтому понятно, что здесь величина выигрыша зависит от того, насколько не только правильно, но и детально распознана ситуация. Если класс, к которому она отнесена достаточно широк, то трудно ожидать большого выигрыша. Если же детализация очень подробная, что соответствует большему числу распознаваемых классов, то можно ожидать большую отдачу от принятого решения.

2) В военном деле мы можем иметь дело с отнесением к классу опасных не только боевых частей (БЧ) ракет, но и ложных целей (ЛЦ), их имитирующих. При этом вынуждены будем обстрелять (а это и есть решение по результатам распознавания) и БЧ и каждую ЛЦ. В этом случае мы имеем проигрыш, измеряемый ценой ПР и затратами на их пуски. Если же мы все-таки часть ЛЦ распознаем и отнесем к соответствующему классу, то сэкономим часть противоракет ПР. Если же все ЛЦ отделим от БЧ баллистических ракет (БР), то выигрыш будет максимальным.

Таким образом, в каждом конкретном случае выигрыш специфичен. Но чем он больше, тем лучше.

При таких качественных рассуждениях, хотя и правильных, назначение и подсчет выигрышей не поддается точным выводам и оценкам. Эта задача всегда индивидуальная, носит эвристический характер и требует творчества конструктора при максимальном учете факторов, влияющих на результат. Так или иначе выигрыш для каждого класса, обеспечивающий соответствующее решение, должен быть назначен.

Принимая во внимание зависимость выигрыша от ряда случайных факторов распознавания, в качестве оценки эффективности необходимо использовать единый показатель, получаемый как математическое ожидание составляющих:

где -- апостериорная вероятность правильного отнесения объекта к Wi -му классу (то есть, после измерения вектора признаков и их отбора).

Теперь сформулированная нами задача может быть формализована следующим образом:

при C0 >=


Здесь A0 ,v0 - искомое решение, обеспечивающее выбор варианта разбиения на классы (алфавит классов) и определения рабочего словаря признаков.

Таким образом, общая постановка проблемы создания СР объектов или явлений заключается в определении оптимального алфавита классов и рабочего словаря признаков при наилучшем решающем правиле в условиях ограничений на построение системы измерений признаков распознавания.

Т е м а 5


Моделирование систем распознавания образов - методология их создания и

оптимизации


Л Е К Ц И Я 5.1

Введение в моделирование


Информация о работе «Построение систем распознавания образов»
Раздел: Психология
Количество знаков с пробелами: 126460
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
31987
0
4

... именно по этой причине современное распознавание образов само питается идеями этих дисциплин. Не претендуя на полноту (а на нее в небольшом эссе претендовать невозможно) опишем историю распознавания образов, ключевые идеи [5, c. 107]. 2. Определения Прежде, чем приступить к основным методам распознавания образов, приведем несколько необходимых определений. Распознавание образов (объектов, ...

Скачать
115369
7
12

... звеньях основной акцент делается на получение и передачу информации в вышестоящие органы. В вышестоящих органах возрастает число задач, связанных с планированием, управлением и обработкой информации. В каждом звене имеется своя автоматизированная система, которая в свою очередь может иметь несколько уровней. Так специальная система состоит из объектов центрального звена, объектов среднего уровня ...

Скачать
83630
0
0

... свойства), которые сами являются результатами или компонентами промежуточных стадий этого процесса. 3. Афизикальные принципы формопорождения в процессах психического отражения Проведенный анализ методологических оснований естественнонаучного исследования непосредственно-чувственного отражения, а также способов его моделирования в технических системах привел нас к выводу о том, что в психологии, ...

Скачать
33014
0
5

... , но только для обычных последовательных вычислительных машин. А какие же ещё машины смогут решить все вышеперечисленные проблемы? – спросите Вы. Совершенно верно, это нейросети. 2. Возможность использования нейросетей для построения системы распознавания речи Классификация - это одна из «любимых» для нейросетей задач. Причем нейросеть может выполнять классификацию даже при обучении без ...

0 комментариев


Наверх