5.1.2. Основные определения
Термин “моделирование” имеет в литературе много различных толкований. Наиболее приемлемым на взгляд многих авторов является такое определение:
моделирование есть метод изучения системы путем ее замены более удобной для экспериментальных исследований системой, называемой моделью и сохраняющей наиболее существенные черты оригинала.
И как дополнение можно использовать следующее определение:
моделирование есть общий метод изучения объекта путем исследования замещающей его модели с переносом получаемой информации на изучаемый объект.
Отправной точкой при построении модели технической системы следует считать описание.
Описание - совокупность сведений об исследуемой системе и условиях, при которых необходимо провести исследования.
Описание представляется в виде:
-схем;
-текстов;
-формул;
-таблиц экспериментальных данных;
-характеристик внешних воздействий и окружающей систему внешней среды.
Описание задает предполагаемый алгоритм работы системы и может формально рассматриваться как некоторая функция внешних воздействий.
В качестве примера можно без достаточной детализации рассмотреть описание модели системы распознавания речи.
Здесь, во-первых, исходя из того, что описание - это сведения о системе и условиях ее применения, нужно более точно определить систему распознавания речи, Например:
“Система распознавания речевых команд управления подъемом стекол автомобиля в процессе его эксплуатации”.
Для такой системы описание модели должно включать:
-схему речевого аппарата человека и теоретические положения речеобразования;
-описание условий речевого управления (шумы двигателя, шумы окружающей среды и т.д.);
-характеристики микрофона, как датчика сигналов, воспринимающего команду (зависимость выходных сигналов от звукового давления во всем диапазоне частот, например, в виде таблиц);
-характеристики сигналов управления (мощность, направленность, удаленность от микрофона);
-характеристики канала приема электрических сигналов на входе преобразователя “аналог-цифра” компьютера (чувствительность, дискретность, точность и т.п.);
-математические зависимости, применяемые для обработки принятого сигнала с целью получения признаков распознавания и классификации;
-способ преобразования результатов распознавания в команды управления;
-характеристики канала передачи команд управления;
-требования к величинам сигналов управления двигателями подъема стекол. и т.д. и т.п. )
Модель воспроизводит описание системы с большими или меньшими упрощениями, зависящими от намерений исследователя, возможностей вычислительных средств, имеющихся в его распоряжении и времени, отпускаемого на проведение испытаний.
При этом должен достигаться разумный компромисс между точностью воспроизведения моделью характеристик системы и сложностью необходимых для этого мер и средств.
Другими словами (основываясь на рассмотрении описания системы как функции внешних воздействий) , при моделировании производится аппроксимация функции-описания более простой и удобной для машинного представления функцией-моделью .
Аналогия между построением модели и аппроксимацией позволяет использовать для наглядности представлений аппроксимацию функции w(x) на некотором отрезке [a,b] линейной комбинацией
Здесь - модель функции-описания w(x) характеризуется
n параметрами (числовыми коэффициентами ai );
j i (x) - некоторые возможные простые функции, заданные на том же отрезке [a,b].
Теперь, исходя из характеристики модели (см. выше положение о том, что модель воспроизводит систему с упрощениями), варьируя параметрами ai , необходимо получить наилучшее или удовлетворяющее исследователя (в некотором смысле) приближение функции-модели к функции-описанию.
Обычно для оценки точности описания и модели пользуются более удобной для вычисления мерой
где Qw - скалярный показатель, который намереваются получить при исследовании системы (например, производительность, надежность, пропускная способность); Qm - скалярный показатель, соответствующий Qw, но полученный при анализе модели m.
При этом описание w(x) и модель m(x) отождествлены с векторами w и m некоторого многомерного пространства.
Если при этом описание полностью характеризует систему и ее состояния и существует некоторое взаимно-однозначное преобразование
и
то модель и система (в крайнем случае ее описание) изоморфны.
При выполнении только второго соотношения, то есть при отсутствии обратного преобразования, имеем дело с гомоморфностью.
Л Е К Ц И Я 5.2
Моделирование сложных систем и применение моделей
5.2.1. Принципы построения модели сложной системы
а) Принцип декомпозиции
Прежде всего исходим из того очевидного положения, что сложные системы можно разбить на подсистемы и элементы с иерархической структурой связей. Тогда каждая подсистема, решая конкретную задачу, обеспечивает тем самым достижение общей цели.
С этих позиций, к особенностям сложной системы следует отнести такие:
1)Сложную систему можно расчленить на конечное число подсистем, а каждую подсистему, в свою очередь, - на конечное число более простых субподсистем до тех пор, пока не получим элементы системы ( под элементами системы следует понимать объекты, которые в условиях данной задачи не подлежат расчленению на части) .
2)Элементы сложной системы функционируют во взаимодействии друг с другом.
3)Свойства сложной системы определяются не только свойствами отдельных элементов, но и характером взаимодействия между ними.
На практике стремятся расчленить сложную систему на такую совокупность подсистем, которая наилучшим образом отражала бы работу и функциональное взаимодействие ее элементов. В этом случае и строгое физико-математическое описание становится более доступным.
Использование принципа декомпозиции систем на подсистемы, подсистем на элементы позволяет создать модель сложной системы путем разработки для простых физически элементов их математическое описание и соответствующий алгоритм.
Практическая реализация этого принципа предполагает, что специалисты, изучающие процессы в каждом конкретном элементе, способны на основе экспериментальных и теоретических исследований разработать модели всех элементов и достичь при этом точности, которая необходима для оценки характеристик работоспособности каждого из этих элементов в условиях штатной эксплуатации.
Например, выделив в качестве отдельного элемента системы двигатель постоянного тока, даем возможность специалисту формировать его описание. Так из теории систем автоматического регулирования для такого двигателя описанием является система дифференциальных уравнений
или после упрощения и преобразований
,
где ,
Таким образом субблоки, блоки, элементы сложной системы или удается описать математически с достаточной степенью точности для расчета их текущих состояний, или в результате специальных экспериментальных исследований получить совокупность числовых данных для описания указанных состояний. Эти числовые данные могут быть как непосредственно использованы при компьютерной реализации соответствующих блоков в виде таблиц, описывающих реакцию этих блоков на входные воздействия, так и в виде заменяющих упомянутые таблицы аппроксимирующих их зависимостей. И в том и в другом случаях программирование не вызывает трудностей.
Так или иначе декомпозиция системы, о которой идет речь, дает возможность специалистам создать программно реализуемые алгоритмы функционирования блоков, субблоков, элементов.
Отсюда совокупность моделирующих алгоритмов блоков, субблоков, элементов, разработанных указанным способом, с учетом их взаимодействия определяют алгоритм модели всей системы в целом.
Примерами декомпозиции при создании модели системы распознавания заболеваний внутренних органов человека могут быть варианты разбиения ее на элементы и блоки компьютерной системы, построенной на основе ультразвуковой медицинской диагностики. Структурная схема одного такого варианта при достаточно поверхностной декомпозиции представлена на рис. 5.2.1.
Модель отражающих Модель ультразву-
свойств внутренне- кового локатора,
го органа человека в являющегося ос- ультразвуковом новным элементом
диапазоне волн аппарата УЗИ
Модель алгоритма
обработки изображе-
ний внутреннего ор-
гана
Модель алгоритма
анализа и принятия
решения
Рис 5.2.1. Структурная схема варианта декомпозиции системы распознавания
Более детальная декомпозиция позволяет представленные блоки расчленить на субблоки и элементы. Так , например, могут быть детализированы первые два из блоков рассмотренной схемы (Рис.5.2.2).
Точно также могут быть подвергнуты декомпозиции и другие модули структурной схемы, приведенной на рис.5.2.1. В результате появляется возможность для узких специалистов на основе физико-математического описания разработать алгоритмы их и затем комплексировать в общий алгоритм модели системы.
а) Принцип допустимых упрощений
В большинстве случаев, однако, общий алгоритм модели, полученный в результате декомпозиции системы, разработки специалистами алгоритмов элементов и их связей и последующего объединения, является
Модуль описания Модуль описания
геометрической возможных поло-
формы внутрен- жений потологи-
него органа ческих образо-
ваний в органе
Модуль описания Модуль описания
положений функцио- геометрических
нальных элементов характеристик
внутреннего органа потологических
образований
Модуль выбора
условий наблюде-
ния внутреннего
органа (сечение)
Модуль описания
звукодинамичес-
ких свойств се-
чения органа
Модуль описания Модуль описания Модуль описания
звукодинамичес- звукодинамичес- звукодинамичес-
ких свойств па- ких свойств каж- ких свойств па-
тологических дого из функцио- ренхимы внутрен-
образований нальных элементов него органа
Модуль формирования ультазвуково-
го изображения сечения органа
на модель алгоритма обработки изображений
Рис.5.2.2. Структурная схема декомпозиции модели отражающих свойств и ультразвукового локатора
только исходным и его еще нельзя положить в основу создания рабочей модели системы. Это определяется его громоздкостью, а также плохой согласованность с вычислительными ресурсами и с требованиями к модели системы.
Такие возможные недостатки исходного алгоритма модели вытекают из различия целей моделирования отдельных элементов и сложной системы в целом.
Причина различия целей состоит в том, что специалисты, разрабатывающие алгоритмы элементов, стремятся к тому, чтобы отразить характеристики этих элементов с максимальной точностью. В результате алгоритмы моделей элементов могут оказаться достаточно сложными, а в итоге
-непомерно возрастает время счета одной реализации функционирования системы в целом;
-уменьшается общее число модельных экспериментов (реализаций) при общем ограничении времени на испытание сложной системы.
И это при том, что всегда существуют более простые реализации элементов по сравнению с предложенными “сходу”. К тому же с точки зрения влияния на конечную точность моделирования системы вклады отдельных элементов могут оказаться несущественными, а значит сами описания алгоритмов их функционирования могут допускать упрощения.
Поэтому модель системы в целом должна строиться на основе компромисса между ожидаемой точностью оценок конечного показателя и сложностью самой модели.
Отсюда путь к созданию рабочей модели системы - поиск компромиссных решений. В основе его лежит анализ допустимых упрощений как исходных алгоритмов моделей элементов, так и алгоритмов их взаимодействия.
При создании рабочей модели системы (разработке алгоритма модели) методики анализа возможных упрощений бывают самыми разными, но смысловое содержание их состоит в том, чтобы обеспечить системные расчеты в отведенное время и достичь при этом заданной точности конечного показателя (например, эффективности для систем распознавания). Естественно, что указанный анализ, направленный на исключение, замену отдельных блоков и субблоков или их корректировку должен предполагать:
-более углубленное аналитическое изучение и представление работы физического аналога;
-экспериментальные исследования физического аналога.
Решения по упрощению многообразны. Все они специфичны и не поддаются обобщению. При этом наиболее конкретная рекомендация по замене может быть дана лишь в отношении блоков, осуществляющих воздействие на исследуемую часть системы. Только в этой ситуации блоки можно однозначно заменить упрощенным эквивалентом, не зависящим от указанной исследуемой части системы. Само собой разумеется, что если при заменах и корректировках не нарушается функциональное взаимодействие блоков и субблоков, то схема сопряжения их в общей модели остается без изменений.
При заменах блоков упрощенным эквивалентом отказываются от точного описания
-либо на основе отдельных исследований на самостоятельной модели (говорят: ”частной” модели) воздействий, данного блока на систему и выбора в качестве замены нового блока формирующего реализации наихудшего воздействия;
-либо при достаточно большом числе факторов, определяющих воздействие, выбором в качестве замены нового блока, формирующего случайное воздействие с заданными характеристиками.
Если, например, в состав некоторой сложной системы входит автоматический электронный измеритель некоторой величины, используемой блоками этой системы, то приходится иметь дело с неизбежными ошибками измерений. Причины ошибок здесь - наличие электронных шумов, вызываемых:
-неравномерной эмиссией электронов (так называемый “дробовой шум) в электровакуумных приборах;
-неравномерностью процессов генерации и рекомбинации носителей тока в полупроводниковых приборах.
При построении модели указанного измерителя возможны:
1)Строгое физико-математическое описание указанных неравномерностей движения носителей тока и их влияния на измеряемую величину ("модель с точностью до носителя").
2)Экспериментальная оценка максимальной ошибки измерения интересующего параметра и замены точного блока всего лишь имитатором постоянной величины максимально возможной ошибки, добавляемой к измерениям.
3)Экспериментальные статистические исследования ошибок измерителя, получение закона распределения вероятностей ошибок и замена точного блока на блок генерации случайных ошибок с заданным законом распределения, добавляемых к “чистым” измерениям.
В технических приложениях моделирования ни "точность до носителя", ни имитация максимальных ошибок не являются удовлетворительным решением. Третий подход к решению задачи встречается наиболее часто. Это связано, особенно в электронике, с наличием большого числа случайных воздействий. Это и каналы связи со случайными шумами. Это и ошибки измерений, носящие случайный характер. Это и точности изготовления деталей и т.д. и т.п.
Отсюда следует, что при соответствующих заменах блоков каждый эксперимент на системной модели должен носить случайный характер.
... именно по этой причине современное распознавание образов само питается идеями этих дисциплин. Не претендуя на полноту (а на нее в небольшом эссе претендовать невозможно) опишем историю распознавания образов, ключевые идеи [5, c. 107]. 2. Определения Прежде, чем приступить к основным методам распознавания образов, приведем несколько необходимых определений. Распознавание образов (объектов, ...
... звеньях основной акцент делается на получение и передачу информации в вышестоящие органы. В вышестоящих органах возрастает число задач, связанных с планированием, управлением и обработкой информации. В каждом звене имеется своя автоматизированная система, которая в свою очередь может иметь несколько уровней. Так специальная система состоит из объектов центрального звена, объектов среднего уровня ...
... свойства), которые сами являются результатами или компонентами промежуточных стадий этого процесса. 3. Афизикальные принципы формопорождения в процессах психического отражения Проведенный анализ методологических оснований естественнонаучного исследования непосредственно-чувственного отражения, а также способов его моделирования в технических системах привел нас к выводу о том, что в психологии, ...
... , но только для обычных последовательных вычислительных машин. А какие же ещё машины смогут решить все вышеперечисленные проблемы? – спросите Вы. Совершенно верно, это нейросети. 2. Возможность использования нейросетей для построения системы распознавания речи Классификация - это одна из «любимых» для нейросетей задач. Причем нейросеть может выполнять классификацию даже при обучении без ...
0 комментариев