Замечания о восстановлении изображений в яркостной и плотностной областях

133819
знаков
3
таблицы
0
изображений

4.4.4. Замечания о восстановлении изображений в яркостной и плотностной областях

Все рассмотренные образцы изображений были искажены в пространстве яркостей либо моделированием характеристической кривой пленки на ЭВМ, либо при проведении стационарной съемки в реальных условиях, как снимок рис. 4.16. Однако восстановление изображений проводилось в пространстве плотностей, связанных с яркостями логарифмической зависимостью, как было показано выше. Во-первых, это, очевидно, связано с предположением о линейности, выраженным в виде равенства (4.38). Во-вторых, из практических соображений, относящихся к качеству изображений, восстановление изображений удобнее проводить в пространстве плотностей, а не в пространстве яркостей, где необходимо учитывать соотношение (4.37). Диапазон изменения яркости составляет обычно 2—3 порядка, и в тех местах изображения, где яркость изменяется резко, могут просматриваться боковые лепестки характеристики восстанавливающего фильтра. Динамический диапазон .изменения плотности гораздо меньше одного порядка, и подобный эффект здесь не столь опасен. В обширных работах Кэннона [42] и Коула [21] показано, что изображения, восстановленные в пространстве плотностей, обладают благоприятными для зрения свойствами. Таким образом, предположение о линейности, связанное с равенством (4.38), из практических соображений оказывается более предпочтительным.

4.4.5. Нелинейные методы восстановления изображений

С позиций цифровой обработки сигналов все рассмотренные методы сводятся к линейной фильтрации сигналов с применением быстрых преобразований Фурье. Из этого, конечно, не следует, что построение эффективной системы обработки сигналов является тривиальной или несложной задачей. При оптимизации методов фильтрации сигналов и соответствующих машинных программ может потребоваться много труда и изобретательности. Тем не менее, основополагающие принципы фильтрации относятся к области линейной обработки сигналов, и их легко найти в работах по классической цифровой обработке сигналов.

Практические исследования, однако, показывают, что линейная обработка имеет недостатки. Во-первых, реальные изображения обладают рядом свойств, которые не учитываются при линейной обработке. Например, яркости точек изображения всегда положительны, а в схеме с линейной обработкой могут появляться отрицательные числа, связанные с боковыми лепестками характеристики восстанавливающего фильтра. Во - вторых, линейная обработка является лишь приближением к оптимальной обработке, так как средства для записи изображений, такие, как кинопленка, в принципе нелинейны. Поэтому представляют интерес методы повышения резкости изображений, в которых учитывается такая нелинейность.

При нелинейном восстановлении изображений (как почти во всех операциях, связанных с нелинейностями) основная трудность заключается в объеме вычислений. В нелинейных системах эффективность вычислений не такая высокая, как при линейной обработке методом БПФ. В силу этого из всех предлагавшихся методов нелинейного восстановления изображений лишь немногие когда-либо применялись для обработки крупных изображений, так как при большом количестве отсчетов число вычислительных операций чрезмерно возрастает. Решения подобных проблем, по-видимому, b большей степени связаны с математическим анализом, чем с цифровой обработкой сигналов, и поэтому данный раздел будет довольно коротким.

Один из практически реализуемых нелинейных методов относится к восстановлению изображений в пространстве плотностей с учетом предположений, связанных с равенством (4.38). Если яркости искаженного изображения перевести в плотности путем логарифмирования, а затем скорректировать изображение с помощью БПФ и результат пропотенцировать, то получится система с нелинейными характеристиками, но реализованная на основе БПФ. К тому же яркости конечного изображения здесь всегда положительны. Теоретическим основанием подобного метода являются теория гомоморфной обработки сигналов, а также мультипликативная модель процесса формирования изображения [19]. Логарифмическая пространственная фильтрация, по-видимому, согласуется с моделью системы человеческого зрения, представленной в первом разделе главы.

Метод Фридена [43] также гарантирует отсутствие отрицательных значений яркости в восстановленном изображении, которое определяется путем решения системы нелинейных уравнений

g(j, k) = h( j , k ) * * ехр [ - 1+ h( j, k) * * ( j, k ) + ] +

 + exp [ -1 + ( j, k) ] ,

 P =  , (4.54)

а исправленное изображение описывается равенством

  (4.55)

где символ ** обозначает двумерную дискретную свертку, а Р — полная энергия исходного изображения. Таким образом, решение оказывается положительным и ограниченным по величине. Однако решить эту систему непросто. Вычисление сверток, фигурирующих в соотношениях (4.54) и (4.55), методом БПФ не очень помогает, поскольку основная трудность заключается в решении системы уравнений относительно неизвестных  и  (множителей Лагранжа в задачах оптимизации). Данный метод был опробован на очень малых изображениях (размером 50х50 отсчетов) в случае разделимых аппаратных функций, причем для решения нелинейных уравнений применялась итерационная процедура Ньютона - Рафсона. При увеличении размеров снимка решение нелинейных уравнений связано с большими трудностями. Был также предложен, но не реализован практически метод прямой оптимизации [2].

Метод нелинейного восстановления изображений, предложенный Фриденом, исходит из предположений о положительности и ограниченности отсчетов изображения. Нелинейные методы могут также основываться на анализе нелинейности записывающих средств. В работах [40, 44] описан байесовский подход к восстановлению изображений, записанных с помощью нелинейных устройств. Результат обработки получается в виде решения нелинейного матричного уравнения. 0пределение этого решения при большом числе переменных, описывающих квантованное изображение, связано c выполнением множества вычислений, а роль цифровой обработки сигналов сводится к выполнению операций свертки [44]. Такой метод применялся для коррекции изображений размерами до 512х512 отсчетов.

Задача (восстановления изображения в общем случае, т.е. с учетом нелинейности записи и условия, что отсчеты яркости должны быть ограниченными и положительными, сводится к задаче нелинейного программирования [2]. Однако возможности современной техники не позволяют решить в общем случае задачу нелинейного программирования при том числе переменных, которое характерно для изображений, представленных в цифровом виде. Были разработаны и опробованы на «маленьких изображениях (размером, например, 32х32 отсчета) специальные алгоритмы, основанные на симплексном методе и относящихся к нему понятиях математического программирования. К большим снимкам эти алгоритмы еще не применялись. Вообще повышение резкости нелинейными методами является той областью цифровой обработки изображений, где далеко не все сделано.


Информация о работе «Дискретизация и квантование изображений»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 133819
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
16809
0
4

... сигнала уровень квантования называют также глубиной дискретизации или битностью. Глубина дискретизации измеряется в битах и обозначает количество бит, выражающих амплитуду сигнала. Чем больше глубина дискретизации, тем точнее цифровой сигнал соответствует аналоговому. В случае однородного квантования глубину дискретизации называют также динамическим диапазоном и измеряют в децибелах (1 бит ≈ ...

Скачать
14053
0
1

... иметь дело с данными, имеющими конечный размер, – например, с массивами чисел конечного размера и ограниченной разрядности. Рассмотренная выше теорема дискретизации дает такую возможность.   Количество информации, энтропия источника сообщений Для сравнения между собой различных источников сообщений необходимо ввести некоторую количественную меру, которая дала бы возможность объективно ...

Скачать
23730
0
8

... функций в виде зависимости их значений от определенных аргументов Δвремени, линейной или пространственной координаты и т.п.) при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой ...

Скачать
326231
12
0

... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...

0 комментариев


Наверх