4.6. Повышение качества изображений
Цель процесса повышения качества изображения состоит в том, чтобы снимок «выглядел лучше». Неудивительно поэтому, что если цель намечена так туманно, то и методы, применяемые для повышения качества изображений, оказываются весьма разнообразными. Субъективные суждения о том, что изображение «выглядит лучше», связаны также с критериями, зависящими от предназначения изображения (изображение должно «выглядеть лучше» применительно к определенной задаче). Если использование изображения связано с точным анализом или количественными измерениями, то радикальные операции, приводящие к значительному изменению пространственных или яркостных соотношений в изображении, могут оказаться неприемлемыми. С другой стороны если изображение применяется только для субъективных целей, то допустимы операции, существенно изменяющие пространственные или яркостные соотношения или же и те и другие, но в целом улучшающие субъективное восприятие изображения. Следовательно, для повышения качества изображения можно применять широкий круг методов; пригодность каждого из них зависит от целей повышения качества данного изображения.
4.6.1. Повышение качества изображения путем пространственно- частотной фильтрации
Для улучшения изображений часто используется пространственно-частотная фильтрация. Если даже снимок не имеет явных дефектов, можно применить фильтр с небольшим подъемом характеристики на верхних частотах, и снимок будет выглядеть более резким. Столь же полезна режекция постоянной составляющей, когда подавляются или ослабляются некоторые (или все) составляющие, расположенные вблизи нулевой частоты. В результате снижается насыщенность больших черных и белых пятен, а изменение масштабов яркости улучшает различимость мелких деталей. На рис. 4.23, а и б приведен пример повышения качества рентгенограммы тепловыделяющего элемента ядерного реактора с помощью пространственно-частотной фильтрации. На улучшенном снимке стало заметно гораздо больше деталей, а также видны ядерное топливо и оболочка элемента.
Особенно интересный метод повышения качества основан на мультипликативной модели формирования изображения в сочетании с гомоморфной фильтрацией [19]. Согласно законам поверхностного отражения, изображение образуется из двух компонент:
(4.69)
где i’ - распределение освещающего пучка, а r - коэффициент отражения освещаемого объекта. Как правило, освещающая компонента образуется из низкочастотных пространственных составляющих, для которых коэффициент отражения приближается к зеркальному и богат деталями. Если прологарифмировать выражение (4.69):
(4.70)
то связь между коэффициентом отражения, освещением и изображением будет выражаться не произведением, а суммой. При фильтрации логарифма изображения режекторным фильтром, настроенным на нулевую частоту, освещающая компонента будет подавлена, а связанный с этим подъем высоких частот улучшит различимость мелкомасштабных элементов. При потенцировании сигнал возвращается в пространство яркостей и образуется изображение, не содержащее отрицательных яркостей. Заметим также, что логарифмирование обусловливает фильтрацию в пространстве плотностей пленки; это является еще одним доводом, дополняющим соображения о предпочтительности обработки в пространстве плотностей, высказанные ранее в разделе о восстановлении изображений.
На рис. 4.24, а, б приведен пример повышения качества изображения методом гомоморфной обработки. Заметим, что изображение стало более резким и на нем лучше различаются предметы, расположенные в тени под крышей.
4.6.2. Повышение качества изображений с помощью
точечных операций
Метод повышения качества изображений, основанный на пространственно-частотной фильтрации, можно противопоставить другим методам, в которых воздействие не распространяется на некоторую область (как для свертки), а все операции являются точечными изображения преобразуются в точки нового изображения независимо друг от друга. Точечные операции можно сгруппировать следующим образом.
Преобразования контрастности. Улучшение изображения происходит за счет изменения его контрастности, что достигается нелинейным преобразованием яркостей. Если, например, корректируемое изображение содержит участки, недодержанные при съемке, то можно воспользоваться преобразованием, «растягивающим» область малых яркостей и переводящим ее в интервал яркостей, более удобных для зрения. Наглядными примерами, в которых требуется подобное преобразование, служат операции коррекции неправильно экспонированных пленок, а так же линеаризации характеристик устройств демонстрации изображения, рассмотренные в первом разделе.
Улучшение на основе статистических данных. Выбор закона преобразования контрастности можно частично автоматизировать, воспользовавшись для подбора его параметров статистическими характеристиками изображения (например, средним значением или дисперсией яркости). Предельным случаем является метод выравнивания гистограмм. В теории информации показано, что равномерная гистограмма соответствует сообщению с максимальной информацией. Поэтому, если гистограмма квантованного изображения (дающая число отсчетов, попадающих на каждый из уровней квантования) после преобразования контраста становится равномерной (т.е. все уровни квантования проявляются с равной вероятностью), то изображение должно содержать максимальное количество информации. Данный метод обычно дает наилучшие результаты при квантовании яркостных изображений, гистограммы которых, как правило, отличаются наибольшей неравномерностью [13]. В результате можно довольно просто получить значительное улучшение изображения [51].
Оконтуривание (препарирование) изображений. При использовании всех рассмотренных методов решается задача повышения качества
Рис. 4.25. Блок-схема устройства отображения, обеспечивающего поточечное улучшение изображении с непосредственным участием оператора.
изображения без существенного его изменения. Если же цель обработки состоит в том, чтобы облегчить восприятие определенной информации, то очень часто применяют методы оконтурирования, когда возможно заметное искажение яркостных и (или) пространственных соотношений. Наиболее распространенным
является метод псевдоцвета, в котором различным яркостям произвольно сопоставляются разные цвета. Демонстрируемое изображение будет содержать отчетливые контуры, проходящие по границам цветных полос. В результате может либо произойти четкое выделение важных деталей, либо получится обманчивое смешение пятен, скрывающее изображение, либо может образоваться забавная цветная картинка, ничего не выделяющая и ничего не скрывающая. В другом методе производится оконтуривание границами черного и белого цвета путем уменьшения числа уровней квантования (обычно до 10 и менее). Отбрасывание от одного до трех старших разрядов также создает контуры, причем картина, получаемая при выделении деталей таким образом, может оказаться очень живописной.
Весьма интересными применительно к точечным операциям повышения качества изображений являются последние образцы цифровых устройств отображения информации (рис. 4.25), позволяющие оперативно корректировать изображение. С помощью быстодействующих постоянных запоминающих устройств (ПЗУ) удается изменять яркости точек изображения при передаче их из ЗУ на электронно-лучевую трубку. Исходное же изображение, записанное на диски, при этом остается неизменным. Таким образом, загрузив в ПЗУ различные функции, описывающие закон изменения яркостей, можно очень быстро переходить от одного способа преобразования яркости к другому. Нужно видеть такое устройство, чтобы полностью оценить его гибкость в улучшении контрастности, коррекции ошибок экспонирования, подстановке псевдоцвета и т.д. Подобные цифровые устройства отображения превращают точечные операции в эффективное и удобное средство улучшения изображений, обеспечивающее возможность взаимодействия человека с машиной.
Автор хотел бы выразить признательность д-ру Томасу Г. Стокхему мл., который внимательно прочитал рукопись и сделал замечания. Автор также глубоко благодарен всем, кто оказал любезность, предоставив приведенные выше снимки: д-ру Вильяму К. Пратту из Университета штата Южная Каролина (рис. 4.9 и 4.10 в разделе о сокращении избыточности изображений), д-ру Т. М. Кэннону из Лос-Аламосской научной лаборатории (рис. 4.16, а, б и 4.22) д-ру Т.Г. Стокхему (мл.) и д-ру Б. Бекстеру из Университета шт. Юта (рис. 4.23, а, б), а также д-ру Е. Баррету из фирмы ЕСЛ (рис. 4.18, а - в).
... сигнала уровень квантования называют также глубиной дискретизации или битностью. Глубина дискретизации измеряется в битах и обозначает количество бит, выражающих амплитуду сигнала. Чем больше глубина дискретизации, тем точнее цифровой сигнал соответствует аналоговому. В случае однородного квантования глубину дискретизации называют также динамическим диапазоном и измеряют в децибелах (1 бит ≈ ...
... иметь дело с данными, имеющими конечный размер, – например, с массивами чисел конечного размера и ограниченной разрядности. Рассмотренная выше теорема дискретизации дает такую возможность. Количество информации, энтропия источника сообщений Для сравнения между собой различных источников сообщений необходимо ввести некоторую количественную меру, которая дала бы возможность объективно ...
... функций в виде зависимости их значений от определенных аргументов Δвремени, линейной или пространственной координаты и т.п.) при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой ...
... рисунков в формате А0-А1 со скоростью 10-30 мм/с. Фотонаборный аппарат Фотонаборный аппарат можно увидеть только в солидной полиграфической фирме. Он отличается своим высоким разрешением. Для обработки информации фотонаборный аппарат оборудуется процессором растрового изображения RIP, который функционирует как интерпретатор PostScript в растровое изображение. В отличие от лазерного принтера в ...
0 комментариев