От изменения теплового тока: чем меньше тепловой ток, тем больше прямое напряжение

Теория
От изменения теплового тока: чем меньше тепловой ток, тем больше прямое напряжение Частотные и импульсные свойства p-n-перехода Переход металл-полупроводник Параметры выпрямителей с любым характером нагрузки Г-образный индуктивно-емкостный LC-фильтр БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ Физическая и математическая модели транзистора Система h-параметров (смешанные или гибридные параметры) Рекомендации по выбору транзисторов при использовании Усилители напряжения звуковых и средних частот Расчет элементов смещения и температурной стабилизации Определение протяженности рабочего участка Параметры усиления УНИПОЛЯРНЫЕ (ПОЛЕВЫЕ) ТРАНЗИСТОРЫ Вольт-амперные характеристики полевых транзисторов Стоковые характеристики и параметры МОП-транзисторов Инженерные модели полевых транзисторов Схемы включения полевых транзисторов в рабочем режиме Параметры транзисторного ключа
128780
знаков
35
таблиц
0
изображений

2. От изменения теплового тока: чем меньше тепловой ток, тем больше прямое напряжение.

3. От изменения температуры: у германиевых переходов при повышении температуры Uпр может вырождаться почти до нуля.

4. От изменения площади перехода: прямое напряжение уменьшается с увеличением площади перехода.

При обратной полярности внешнего источника (обратносмещенное непроводящее состояние p-n-перехода) полярность внешнего источника напряжения совпадает с полярностью контактной разности потенциалов, потенциальный барьер p-n-перехода повышается, запрещенная зона перехода расширяется и при определенном Uобр диффузионный ток через переход почти прекращается. Носители каждой области оказываются "оттиснутыми" к краям полупроводника и лишь ток неосновных носителей продолжает течь через переход. Процесс захвата электрическим полем неосновных носителей и перебрасывание их в соседнюю область называется экстракцией.

При малых значениях обратного напряжения через p-n-переход будет наблюдаться движение и основных носителей, образующих ток, противоположно направленный току дрейфа:

Результирующий ток через p-n-переход при действии обратного напряжения

(1.4)

Уравнение (1.4) описывает обратную ветвь обратносмещенного перехода (рис. 1.1).

При Uобр, большем 3jt, диффузионный ток через переход прекращается.

Выше было отмечено, что ток Iоидеализированного перехода не зависит от приложенного напряжения, но реальный обратный ток перехода намного превышает величину Iо; необходимо четко отличать ток тепловой от тока обратного, получившего название тока термогенерации; в кремниевых структурах тепловой ток при комнатной температуре вообще не учитывается, так как он на 2-3 порядка меньше обратного тока. У германиевых переходов тепловой ток на 6 порядков больше, чем у кремниевых, поэтому в германиевых структурах этим током пренебрегать нельзя.

В реальном переходе наблюдается довольно значительная зависимость тока неосновных носителей от приложенного напряжения. Дело в том, что процессы генерации и рекомбинации носителей происходят как в нейтральных слоях областей "p" и "n", так и в самом переходе. В равновесном состоянии перехода скорости генерации и рекомбинации везде одинаковы, а при действии обратного напряжения, когда расширяется запрещенная зона, область перехода сильно обедняется носителями, при этом процесс рекомбинации замедляется и процесс генерации оказывается неуравновешенным. Избыток генерируемых носителей захватывается электрическим полем и переносится в нейтральные слои (электроны в n-область, а дырки - в p-область). Эти потоки и образуют ток термогенерации. Ток термогенерации слабо зависит от температуры и сильно зависит от величины приложенного обратного напряжения; уместно вспомнить упрощенную формулу зависимости скорости движения электрона в ускоряющем электрическом поле от приложенного напряжения:

.

С увеличением приложенного напряжения скорость электрона увеличивается, растет число соударений его с атомами в узлах решетки (ударная ионизация), что приводит к появлению новых носителей заряда. Увеличение числа зарядов приводит к увеличению тока неосновных носителей, температура перехода увеличивается, а это, в свою очередь, приводит к нарушению ковалентных связей и росту носителей. Процесс может принять лавинообразный характер и привести к пробою p-n-перехода (рис. 1.1). Различают следующие виды пробоев:

туннельный (при напряженности поля перехода свыше 106 В/см, до точки «а»);

электрический (вызван ударной ионизацией, после точки «а»), этот тип пробоя иногда называют лавинным, при этом в переходе идут обратимые процессы и после снятия обратного напряжения он восстанавливает свои рабочие свойства. При электрическом пробое нарастание тока почти не вызывает изменения напряжения, что позволило использовать эту особенность характеристики для стабилизации напряжения;

тепловой возникает в результате сильного разогрева перехода (после точки «б»); процессы, которые идут при этом в переходе, необратимы, и рабочие свойства перехода после снятия напряжения не восстанавливаются (вот почему в справочной литературе строго ограничивается величина обратного напряжения на переходах диодов и транзисторов).

 

 

Рис. 1.1. ВАХ реального электронно-дырочного p-n-перехода

Вывод. Анализируя прямую и обратные ветви вольтамперной характеристики, приходим к выводу, что p-n-переход хорошо проводит ток в прямосмещенном состоянии и очень плохо в обратносмещенном, следовательно, p-n-переход имеет вентильные свойства, поэтому его можно использовать для преобразования переменного напряжения в постоянное, например, в выпрямительных устройствах в блоках питания.

 

1.2.1. Температурные свойства p-n-перехода

Уравнение (1.1) содержит температурно-зависимые параметры - I0 и j t.

I0 - тепловой ток, или ток насыщения. Для идеального перехода I0 определяет величину обратного тока, а в реальных переходах I0 намного меньше обратного тока. Ток Iо сильно зависит от температуры (рис. 1.1): даже незначительные изменения температуры приводят к изменению Iо на
несколько порядков.

Максимально допустимое увеличение обратного тока диода определяет максимально допустимую температуру для него, которая составляет
80-100 оС для германиевых диодов и 150-200 оС для кремниевых.

Минимально допустимая температура для диодов обычно лежит в пределах от 60 до -70оС.

У германиевых переходов ток I0 на шесть порядков больше, чем у кремниевых, поэтому при одинаковых условиях у них прямые напряжения на
0,35 В меньше и в зависимости от режима составляют 0,25-0,15 В (напряжение отпирания у германиевых переходов при повышении температуры вырождается почти в "0").

На рис. 1.1 прямая ветвь характеристики, снятая при 70  оС, сместилась влево: с повышением температуры вступает в силу собственная проводимость полупроводника, число носителей увеличивается, так как усиливается процесс термогенерации. Обратная же ветвь ВАХ (рис. 1.1) смещается вправо, то есть с повышением температуры до +70 оС электрический пробой в переходе наступает раньше, чем при температуре +20 оС. При увеличении обратного напряжения к тепловому току добавляется ток термогенерации. В сумме эти два тока образуют через обратносмещенный переход обратный ток Iобр. При изменении температуры новое значение обратного тока можно оп-

ределить из соотношения

  (1.5)

где Iобр.20 оС - значение обратного тока при температуре не выше 27 оС (берется из справочной литературы);

А - коэффициент материала, из которого выполнен полупроводниковый прибор (Агермания= 2, Акремния= 2,5);

j t- температурный потенциал, который при комнатной температуре равен 0,025 В, а при другой температуре j tможно определить по формуле

 (1.6)

Таким образом, при увеличении температуры обратный ток насыщения увеличивается примерно в два раза у германиевых и в два с половиной раза у кремниевых диодов (1.5).


Информация о работе «Теория»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 128780
Количество таблиц: 35
Количество изображений: 0

Похожие работы

Скачать
25366
1
0

кую и дидактическую функции с учетом ситуации в российской социологии. Направления фундаментального уровня различаются и систематизируются в концепции преподавания социологической теории на основе их существенной связи с различными решениями важнейших философских, теоретико-познавательных и мировоззренческих проблем, сформулированных в истории европейской социальной мысли относительно природы ...

Скачать
24554
3
7

... смешанными стратегиями игроков 1 и 2 называются такие наборы хо, уо соответственно, которые удовлетворяют равенству  Е (А, х, y) = Е (А, х, y) = Е (А, хо, уо). Величина Е (А, хо ,уо) называется при этом ценой игры и обозначается через u. Имеется и другое определение оптимальных смешанных стратегий: хо, уо называются оптимальными смешанными стратегиями соответственно игроков 1 и 2, если они ...

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
32343
0
0

... была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач. Выдающийся вклад в современную теорию дифференциальных уравнений внесли российские математики Н.Н. Боголюбов, А.Н. Колмогоров, И.Г. Петровский, Л.С. Понтрягин, С.Л. Соболев, А.Н. Тихонов и другие. Влияние на развитие ...

0 комментариев


Наверх