11. Формы выражения статистических показателей: абсолютные, относительные и средние величины

Абсолютными статистическими величинами называются показатели, выражающие размеры (объем, уровни) конкретных общественных явлений в единицах меры ве­са, площади, объема, силы, стоимости и т.д.

Абсолютные статистические величины представляют собой всегда числа имено­ванные. Выделяют единицы измерения натуральные, стоимостные, трудовые.

Натуральными принято называть единицы измерения, выражающие величину пред-

метов, вещей в физических мерах, т.е. в мерах длины, площади, объема, веса и

т.п.

В некоторых случаях применяют условные натуральные единицы измерения.

Имея ряд разновидностей одной и той же потребительной стоимости, одну из них принимают за единицу, а другие пересчитывают в эти единицы с помощью специ­альных коэффициентов.

ЗАДАЧА. В отчетном периоде предприятиями консервной промышленности района было произведено продукции:

Виды продукции Вес или объем банки Колличество банок, тыс. шт.

Овощные консервы: соус томатный икра кабачковая огурцы соленые томаты натуральные

Молочные консервы: молоко сгущеное

535 г

510 г 1000 cм/3

800 см/3

400 г

120

150

300

200

500

Определить общий объем производства консервов в отчетном периоде в услов­ных единицах.

ПРИМЕЧАНИЕ. За условную банку принимается: а) банка с весом продукции (варенья, джема, повидла, желе, томатных соусов, стерилизованных фруктовых соусов, фруктовой пасты, пюре, сгущеного молока, натуральных соков, овощных и фруктовых маринадов) 400 г; б) банка (со всеми другими видами продукции) ем­костью 353,4 см/3.

Для определения общего объема производства консервов необходимо установить коэффициент перевода в условные единицы измерения, расчет приведем в таблице:

Виды продукции Вес или объем банки Вес или объем условной единицы измерения Коэффициент перевода

Овощные консервы: соус томатный икра кабачковая огурцы соленые томаты натуральные

Консервы молочные: молоко сгущеное

535 г

510 г 1000 см/3

800 см/3

400 г

400 г

400 г

353,4 см/3

353,4 см/3

400 г

1,337

1,275

2,829

2,263

1,000

Определяем общий объем производства:

Виды продукции Произведено продук­ции банок, тыс. шт. Коэффициент перевода Произведено продукции тыс шт ус­ловн. банок
А 1 2 3
Овощные консервы: соус томатный икра кабачковая

120

150

1,337

1,275

160,4

191,3

- 32 -

А 1 2 3

огурцы соленые

томаты натуральные

Консервы молочные: молоко сгущеное

300

200

500

2,829

2,263

1,000

848,7

452,6

500,0

Общий объем производства X X 2153,0

Сравнительную оценку явлений общественной жизни дают относительные ве­личины - обобщающие статистические показатели. Относительная величина - число­вая мера сравнения двух статистических показателей, средство обобщения особен­ностей конкретных общественных явлений. Эта величина вычисляется отношением од­ного абсолютного показателя к другому абсолютному показателю.

В зависимости от характера связи между абсолютными показателями и целями исследования различные виды относительных величин объединяются в группы:

1) относительные величины в статике характеризуют особенности явления в данный момент времени;

2) относительные величины динамики применяют для характеристики изменений уровня развития явления за отдельные периоды времени;

3) относительные величины в планировании и учете выполнения плановых прог­рамм предприятий.

Относительные величины каждой группы могут быть именованными: простыми (кг,шт.) и комбинированными (т/км, кг/шт), а также отвлеченными. Эти относи­тельные величины могут быть коэффициентами; выражаются также в процентах (1/100) часть числа и промилле (1/1000 часть числа) (число родившихся считает­ся на 1000 человек населения). Иногда расчет ведется в продецимилле (1/10000 часть числа). В теории вероятностей, математической статистике и общей теории статистики - в долях, когда объем совокупности принимается равным единице.

В первую группу относительных величин входят относительные величины струк­туры, для расчета которых необходимо располагать абсолютными величинами по от­дельным частям, группам явления и по всему явлению в целом. Отношение числа единиц определенной группы (части совокупности) к общему объему совокупности называется относительной величиной доли (вычисляется в коэффициентах). Если доля признака или объема совокупности выражена в процентах, то вычисляется по­казатель удельного веса. Относительные величины удельного веса позволяют выя­вить отличительные особенности явления в разных условиях времени и места.

Для характеристики особенностей развития явления в данной среде, в данный момент времени применяют относительные величины интенсивности и координации -

- результат сравнения абсолютных величин, относящихся к двум различным, но связанным сторонам явления.

Относительные величины интенсивности показывают, как часто событие проис­ходит в данной среде, и вычисляется на основе сопоставления числа интересующих нас событий к численности среды, которая вызывает эти события.

Относительные величины координации - результат соотношения двух групп единиц

- 33 -

в составе одной и той же совокупности, причем одна из них принимается за ба­зу сравнения.

Вторая группа - относительные величины динамики, необходимые для характе­ристики изменений явления во времени. Относительные величины динамики (темпы роста) получают сравнением абсолютных, а также средних величин текущего или отчетного периода с аналогичными показателями базисного периода, т.е. периода с данными которого сравниваются данные каждого периода (года, квартала, меся­ца). Таким образом сопоставляются данные об одном и том же явлении, но за раз­личные сроки. В экономико-статистическом анализе применяются относительные ве­личины динамики, как базисные, так и цепные.

Относительные величины динамики базисные - результат сравнения абсолютных величин за ряд последовательных периодов времени с данными периода, принятого за основание или базу сравнения. Базисные относительные величины динамики по­казывают изменение объема явления или значений его признака за длительный пе­риод времени.

Цепные относительные величины динамики, иногда называемые переменными, -

- результат сопоставления абсолютных показателей изучаемого явления за теку-

щий период с показателями предыдущего периода времени. Они характеризуют темпы

развития явления за каждый данный период по сравнению с предшествующим перио-

дом времени. Вычислим базисные коэффициенты роста, темпы роста и темпы прироста

(относительный прирост) по данным отчетности строительного предприятия о раз­мере выполняемого объема строительно-монтажных работ; предыдущий период принят за базу сравнения:

П О К А З А Т Е Л И 1990 г 1991 г 1992 г

Объем строительно-монтажных работ, млн. руб.(yi)

Коэффициенты роста (К = yi : yi - 1)

Темпы роста (Т = К x 100)

Teмпы прироста (К - 1) x 100

1,3

1,0

100

-

1,6

1,23

123

23

1,9

1,19

119

19

Прирост объема строительно-монтажных работ составлял в 1991 году 23%, а в 1992 г. - 19%, но объем строительно-монтажных работ увеличился на 0,3 млн. руб.

Между базисными и цепными относительными величинами динамики существует определенная взаимосвязь, позволяющая более широко применять относительные величины в экономико-статистическом анализе общественных явлений. Если перем­ножить цепные относительные величины динамики (по абсолютным данным), то полу­чим базисную относительную величину динамики. По данным расчетной таблицы:

1,6/1,3 x 1,9/1,6 = 1,9/1,3 = 1,46, или увеличение на 46% объема стро­ительно-монтажных работ в 1992 г. по сравнению с 1990 г.

Если же разделить базисные относительные величины динамики, то получим ве­личину цепной относительной величины динамики:

1,9/1,3 : 1,6/1,3 = 1,19. В процессе сравнения абсолютных величин в дина­мике возникает проблема выбора базы сравнения.

Базу сравнения для изучения динамики общественных явлений следует выбирать на

основе исследования особенности явления, а также цели расчета относительных

величин динамики.

При выборе относительных величин необходимо соблюдать следующие правила:

1) относительные величины вычисляют после критической оценки всех сторон изу­чаемого явления и четкого определения понятий и категорий явлений; например, после раскрытия содержания категорий рабочих, ИТР можно расчитать, сколько

ИТР приходится на 100 рабочих;

2) сопоставимые данные по качественно однородным группам, в частности относи­тельные величины удельного веса получают на основе типологической и структур­ной группировки;

3) расчитывают относительные величины по достаточно большому числу единиц со­вокупности; для совокупности с малым числом единиц неуместно вычисление отно­сительных величин;

4) для более полного освещения явлений необходима система относительных величин, вычисленных по ряду существенных признаков. В такой системе объективно отража­ются закономерности развития явления: результаты развития отраслей, предприя­тий и других подразделений;

5) величина полученной относительной величины зависит от правильно выбранной базы сравнения;

6) взятые для сравнения абсолютные величины должны быть сопоставимы: а) в грани­цах одного и того же места и периодов времени, с учетом сезонных колебаний;

б) по одному и тому же кругу единиц наблюдения; в) по условиям и способам сбора данных первичного учета и их статистической сводки; г) по методологии расчета;

7) сравнивают логически взаимосвязанные абсолютные величины в числителе и зна­менателе отношения. Сопоставимость данных, полученных в результате единовремен­ного и текущего наблюдений, достигается путем специального расчета средних ве­личин и др.

8) в процессе экономико-статистического анализа следует рассматривать во взаимо­связи абсолютные и относительные величины. Так, например, для различных пред­приятий 1% промышленной продукции имеет различное абсолютное значение.

Средние величины.

1)    Сущность и задачи средних величин

2) Виды средних величин

А)среднее арифметическое

Б)среднее гармоническое

3)Структурные средние

а)мода

б)медиана

в)квартили ,децили.

Статистика занимается изучением массовых социально-экономических явлений

Для которых характерно, то что каждая из них может иметь различное количественное выражение одного и того же признака.

Средняя величина есть обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку.

Она отражает определённый уровень достигнутый в процессе развития явления к определённому периоду или моменту времени.

Она представляет значение этого признака в совокупности одним числом, несмотря на различия количественных характеристик этого признака по отдельным единицам совокупности.

В развитии явлений необходимость сочетается со случайностью. Таким образом, мы говорим, что средняя величина связана с законом больших чисел.

Суть этой связи в том, что при осреднении случайных отклонений индивидуальных величин от средней , в силу действия закон больших чисел, они погашаются , а в средней отчётливо выявляются основные тенденции развития.

Важнейшей особенностью является то, что через характеристику единицы она (средняя величина?) характеризует всю совокупность в целом.

Важнейшее свойство средней величины- она обладает устойчивостью, что позволяет выявлять закономерности в развитии явлений.

Средние величины заключаются в том, что они облегчают сравнение показателей относящихся к совокупности численность которых неодинаковы.

 Средняя величина – абстрактная величина. Поэтому анализ проводимый при ней всегда дополняется показом индивидуальных величин.

Расчёт средних величин и анализ, при помощи средних, всегда связан с методом группировок.

Требования к расчётам средних величин.

1)    Без глубокого научно-экономического анализа расчёт средних величин? не будет объективно отражать реальную действительность.

Её надо вычислять так , чтобы она погашала то, что мешает выявлению характерных черт и закономерностей.

Среднее может быть вычислено только для какой-то однородной совокупности.

Расчёт средней необходимо сочетать с группировкой.

В статистике рассчитывают индивидуальные и общие средние.

Общее среднее затушёвывает существенные (существующие) отличия между явлениями таким образом во многих случаях они становятся фиктивными.

Средняя величина вычисленная для какой-то? Неоднородной совокупности называется огульной.

Одинаковые по форме технике исчисления средние величины в одних условиях могут быть огульными, а в других общими.

Говоря о методологии расчёта средних, не надо забывать, что средние всегда дают обобщённую характеристику, изучая явления лишь по одному признаку.

В то время как каждое явление имеет много признаков.

Поэтому надо исчислять систему средних позволяющих описать явления с разных сторон.

Это означает что расчёт средних величин проводится по формулам, которые разрабатывает математическая статистика.

Задание общей теории статистики дать смысловую преимущественно экономическую интерпретацию результатов, полученных по расчетам этих математических формул.

Признак по которым находится среднее называется усредняемое (Х). Величина усредняемого признака у каждой единицы совокупности называется индивидуальное значение.

Значение признака, которое встречается у крупных единиц или отдельных единиц и не повторяется называется вариантами признака (Х1 Х2).

Средняя величина у этих значений обозначается как Х``

Число вариантов признаков обозначается n.

Среднее арифмтическое.

Где Х1,Х2…Хn-значение признака (варианты)

n- число вариантов

где F1, F2,…Fn-веса значений признака.

Пример. Вычислить средний возраст выпуска.

Возраст которого : 24,22,25,24,25,22,22,24,26 лет.

Расчёт по средней арифметической простой

Расчёт по средней арифметической взвешаной.

Возраст (Х) Число выпускников(f) Сумма возрастов (Х*f) Решение

22 3 66 Написать рукой

24 4 96

25 2 50

26 1 26

 

f- частота повторения соответствующих вариантов в статистике называется весом.

Средняя арифметическая и ряд математических свойств.

1)Сумма отклонений значений признака от средней арифметической равно 0.

2)    Если от каждого варианта вычесть или к каждому варианту прибавить какое-либо постоянное число, то среднее увеличится или уменьшится на тоже самое число.

3)    Если каждый вариант умножить или разделить на какие-либо число, то среднее уменьшится или увеличится во столько же раз.

4)    Если веса или частоты разделить или умножить на какое-либо число, то величина средней не изменится.

Это свойство даёт возможность частоты заменять их удельными весами

Где «р»- удельный вес –выраженный в процентах.

Если удельный вес выражается в доле, то Х среднее =

Особое внимание в статистике: если единицы совокупности разделены на несколько групп, то

 


Fi—количество единиц в группе.

На основе свойств средней величины возможны несколько способов ее расчёта

1)    Способ расчёта моментов средней

2)    Способ расчёта от условного нуля.

Процедура1) если возможно сокращаем веса

2) выбираем начало отсчёта или условный ноль(обычно при выборе нуля ориентируемся на выбор варианта с наибольшим весом. Х0 –условный ноль.

3)    Либо находим отклонения вариантов от условного нуля Х1-Х0, Х2-Х0, Х3-Х0.

4)    Если эти отклонения содержат общий множитель, то делим отклонения на этот множитель

 

1)Среднее гармоническое рассчитывается в тех случаях, когда среднее арифметическое по имеющимся данным рассчитать невозможно.

2)Когда расчет средних гармонических более удобен.

Расчёт средней гармонической прост.

Х варианты осредняемого признака

Пример требуется исчислить производительность труда рабочей силы, если 1-ому рабочему требуется для изготовления единицы продукции 0,25 часа.

Второму 1/3 часа

3-ому1/2 часа

Для расчёта средней гармонической взвешаной

Эта формула используется в тех случаях, когда значение признака и вес даны в виде сомножителя.

Пример по трём сахорным заводам имеется следующие данные.

Заводы Затраты времени на переработку 1000 ц. сахарной свеклы дней. Х Затраты времени на переработку всей свеклы дней. Х*f
1 50,3 59171,6
2 58,8 74400,8
3 68,5 42245,3

Вычислить средние затраты времени на переработку 1000 ц свеклы по трём заводам в целом.

В данной задаче для расчетов применяется среднее гармоническое взвешаное.\

???

Критерием правильности применения средней гармоническое взвешаной является то, что деление затрат времени на переработку всей свеклы на величину Х затрат времени,необходимых для переработки 1000ц. свеклы даёт количество переработанной свеклы вообще.

Степенная средняя вычисляется следующим образом в общем виде

Степень К Вид средней

К=1

К=2

К=0

К=-1

Пример Оценка 1-ый вопрос 2

2_ой вопрос 5

2,8<=3,05<=3,8<=4,05

13. Методы обоснования выбора формы средней величины. Структурные средние.

17. Понятие о моде, медиане

Структурные средние.

Для того чтобы определить среднее в некоторых случаях нет необходимости, или возможности прибегать к расчёту степенных средних в этих случаях появляется возможность или необходимость расчёта структурной средней .

Если величина средней (ср. арифметической) зависит от всех значений признака, встречаемых в данном распределении, то значение структурной средней определяется структурой распределения, местом распределения. Отсюда их названия.

Медиана – такое значение признака, которым обладает центральный член распределения ряда.

Вес телят

75 кг

80

83

87 (87+92)/2=89,5

92

97

101

пример

Месяч. З/п (руб) --Х Хi Количество рабочих --f Х*f Накопленные частоты --S
До 800 700 1 700 1
800- 1000 900 2 1800 3
1000- 1200 1100 4 4400 7
1200- 1400 1300 1 1300 8
1400- более 1500 2 3000 10
Итого 10 11200

Медиана в интервальном ряду рассчитывается следующим образом.

Для определения медианы прежде всего исчисляют её порядковый номер по формуле  и строят ряд накопленных частот . Накопленной частоте, которая равна порядковому номеру медианы или первая его превышает, в дискретном вариационном ряду соответствует вариант, являющийся медианой, а в интервальном вариационном ряду – медианный вариант.

где Х0 – нижняя граница медианного интервала

d- величина медианного интервала

--сумма частот или весов рядов

Sме-1—сумма накопленных весов по интервалу предшествующему медианному

Fo-частота медианного интервала

Мода значение признака, которое чаще других встречается в данном ряду распределения.

Мода для дискретного ряда определяется как варианта, имеющая наибольшую частоту.

Где Хо –нижняя граница модального интервала.

d- величина интервала

f1- частота (вес) интервала, предшествующего модальному

f2—частота (вес) модального интервала.

F3—частота (вес) интервала, следующего за модальным.

Квартиль.

Q1-номер квартиля

номер первого квартильного значения признака

FQ1—частота квартильного интервала

FQ1-1 –сумма накопленных частот в интервале, предшествующего квартильному.

Q2=М

 

-- номер третьего квартильного признака

Квартиль- структурное значение, которое отражает значение среднего признака в К-Л части.

Расчёт средних всегда производится одновременно с количественным анализом, изучаемых совокупностей, средние величины рассчитываются не всегда, когда на лицо количественная вариация признаков.

Формула для расчёта первого дециля.

 Средняя величина должна быть рассчитываема для количественно-однородной совокупности.

 Это требование состоит в том, что среднее нельзя применить к таким совокупностям, отдельные части которых подчинены различным законам развития относительных величин (определяемого)(усредняемого) признака.

 


Информация о работе «Cтатистика»
Раздел: Статистика
Количество знаков с пробелами: 58220
Количество таблиц: 17
Количество изображений: 0

Похожие работы

Скачать
60153
0
0

... индексов. Для оценки использования трудовых ресурсов существует показатель фондовооруженности труда:   - показатель количества фондов на одного работника  - фондоемкость w = f*t Тема №11. Статистика общественного продукта. 1. Принципы построения макроэкономических показателей. Макроэкономические показатели призваны отразить результаты экономической деятельности за определенный период и ...

Скачать
59439
0
1

... индексов. Для оценки использования трудовых ресурсов существует показатель фондовооруженности труда: - показатель количества фондов на одного работника - фондоемкость w = f*t Тема №11. Статистика общественного продукта. 1. Принципы построения макроэкономических показателей. Макроэкономические показатели призваны отразить результаты экономической деятельности за определенный период и ...

Скачать
51758
2
0

... Маастрихте в 1992 г. главами государств-членов ЕВС было принято принципиальное решение о поэтапном реальном формировании Экономического и валютного союза, основанного прежде всего на введении единой европейской валюты. В процес­се построения ЭВС в качестве главных стратеги­ческих целей были названы «независимая единая денежно-кредитная политика, направленная на поддержание ценовой стабильности, и ...

Скачать
58039
14
0

... хищного зверя. И это – хрупкий и тонкий мостик, перебрасываемый Шекспиром от Антония из трагедии "Юлий Цезарь", где он изображен молодым, деятельным, амбициозным, решительным, к Антонию в трагедии "Антоний и Клеопатра". В "Юлии Цезаре" Антоний больше напоминает злодея, играющего чувствами других людей в угоду собственным амбициям, он идет к своей цели, не задумываясь над тем, кто станет его ...

0 комментариев


Наверх