ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА СТАТИСТИКИ


КУРСОВАЯ РАБОТА

по статистике

Вариант 2

Выполнил: Кончаков Е.А.____

3 курс, 310 гр.____________

Проверила: Каманина А.М._

г. Москва, 2001 г.

Задача №1.

Имеются следующие выборочные данные (выборка 10%-ная, механическая) по предприятиям одной из отраслей промышленности:

№ предприятия Численность промышленно-производственного персонала, чел. Выпуск продукции, млн. руб. № предприятия Численность промышленно-производственного персонала, чел. Выпуск продукции, млн. руб.
1 420 99,0 12 600 147,0
2 170 27,0 13 430 101,0
3 340 53,0 14 280 54,0
4 230 57,0 15 210 44,0
5 560 115,0 16 520 94,0
6 290 62,0 17 700 178,0
7 410 86,0 18 420 95,0
8 100 19,0 19 380 88,0
9 550 120,0 20 570 135,0
10 340 83,0 21 400 90,0
11 260 55,0 22 400 71,0

По исходным данным:

Постройте статистический ряд распределения предприятий по выпуску продукции, образовав пять групп с равными интервалами. Постройте графики ряда распределения. Рассчитайте характеристики ряда распределения предприятий по выпуску продукции: среднюю арифметическую, среднее квадратическое отклонение, дисперсию, коэффициент вариации.

Сделайте выводы.

С вероятностью 0,954 определите ошибку выборки среднего выпуска на одно предприятие и границы, в которых будет находиться средний выпуск продукции отрасли в генеральной совокупности. Cодержание и краткое описание применяемых методов:

 

Статистическая группировка в зависимости от решаемых задач подразделяются на типологические, структурные аналитические. Статистическая группировка позволяет дать характеристику размеров, структуры и взаимосвязи изучаемых явлений, выявить их закономерности.

Важным направлением в статистической сводке является построение рядов распределения, одно из назначений которых состоит в изучении структуры исследуемой совокупности, характера и закономерности распределения.

Ряд распределения – это простейшая группировка, представляющая собой распределение численности единиц совокупности по значению какого-либо признака.

Ряды распределения, в основе которых лежит качественный признак, называют атрибутивным. Если ряд построен по количественному признаку, его называют вариационным.

При построении вариационного ряда с равными интервалами определяют его число групп () и величину интервала (). Оптимальное число групп может быть определено по формуле Стерджесса:

, (1)

где- число единиц совокупности.

Величина равного интервала рассчитывается по формуле:

(2)

где – число выделенных интервалов.

Средняя – является обещающей характеристикой совокупности единиц по качественно однородному признаку.

В статистике применяются различные виды средних: арифметическая, гармоническая, квадратическая, геометрическая и структурные средние – мода и медиана. Средние, кроме моды и медианы, исчисляются в двух формах: простой и взвешенной. Выбор формы средней зависит от исходных данных и содержание определяемого показателя. Наибольшее распространение получила средняя арифметическая, как простая, так и взвешенная.

Средняя арифметическая простая равна сумме значений признака, деленной на их число:

, (3)

где – значение признака (вариант);

–число единиц признака.

Средняя арифметическая простая применяется в тех случаях, когда варианты представлены индивидуально в виде их перечня в любом порядке или в виде ранжированного ряда.

Если данные представлены в виде дискретных или интервальных рядов распределения, в которых одинаковые значения признака () объединены в группы, имеющие различное число единиц (), называемое частотой (весом), применяется средняя арифметическая взвешенная:

 

(4)

 

 

Для измерения степени колеблемости отдельных значений признака от средней исчисляются основные обобщающие показатели вариации: дисперсия, среднее квадратическое отклонение и коэффициент вариации.


Дисперсия () – это средняя арифметическая квадратов отклонений отдельных значений признака от их средней арифметической. В зависимости от исходных данных дисперсия вычисляется по формуле средней арифметической простой или взвешенной:

- невзвешенния (простая); (5)

- взвешенная. (6)

Среднее квадратическое отклонение () представляет собой корень квадратный из дисперсии и рано:

- невзвешенния; (7)

- взвешенная. (8)

 

В отличие от дисперсии среднее квадратическое отклонение является абсолютной мерой вариации признака в совокупности и выражается в единицах измерения варьирующего признака (рублях, тоннах, процентах и т.д.).

Для сравнения размеров вариации различных признаков, а также для сравнения степени вариации одноименных признаков в нескольких совокупностях исчисляется относительный показатель вариации – коэффициент вариации (), который представляет собой процентное отношение среднего квадратического отклонения и средней арифметической:

(9)

 


По величине коэффициента вариации можно судить о степени вариации признаков, а, следовательно, об однородности состава совокупности. Чем больше его величина, тем больше разброс значений признака вокруг средней, тем менее однородна совокупность по составу.

При механическом отборе предельная ошибка выборки определяется по формуле:

(10)

 

Решение:

1. Сначала определим длину интервала по формуле (2):

19,0-50,8; 50,8-82,6; 82,6-114,4; 114,4-146,2; 146,2-178,0


№ группы

Группировка
предприятий
по выпуску
продукции

№ предприятия

Выпуск
продукции

I 19,0-50,8 8 19,0
2 27,0
15 44,0
II 50,8-82,6 3 53,0
14 54,0
11 55,0
4 57,0
6 62,0
22 71,0
III 82,6-114,4 10 83,0
7 86,0
19 88,0
21 90,0
16 94,0
18 95,0
1 99,0
13 101,0
IV 114,4-146,2 5 115,0
9 120,0
20 135,0
V 146,2-178,0 12 147,0
17 178,0


Информация о работе «Задачи по статистике»
Раздел: Статистика
Количество знаков с пробелами: 18806
Количество таблиц: 9
Количество изображений: 0

Похожие работы

Скачать
6960
2
0

... : на каждые 100 руб., вложенные в капитал, предприятие получило 7,34 руб. балансовой прибыли. Задача 6 Объём продукции за отчётный квартал увеличилась на 1,5 %, а среднегодовой остаток основных фондов - на 6 %. Определить изменение фондоотдачи и фондоёмкости (в %).   Решение: Фо =  ; Фе = Для определения изменения фондоотдачи и фондоемкости используем индексы фондоотдачи (IФо) и ...

Скачать
53355
6
0

... правительства, специально принимаемые по представлению статистических органов за некоторое время перед каждой переписью, иногда за несколько лет, иногда – месяцев. 3.  Статистический анализ основных показателей здоровья населения. 3.1 Методика анализа состояния и тенденций уровня смертности. Вероятностные таблицы смертности – это самый совершенный инструмент для анализа состояния и тенденций ...

Скачать
23885
0
0

... криминологический прогноз, т.е. представить хотя бы приблизительно, что ожидается, каковы перспективы (прогностическая функция); 4) выявить “тревожные” моменты в характеристике преступности, положительные стороны и недостатки в работе правоохранительных органов, “узкие места”, слабые звенья (низкий уровень раскрываемости преступлений, длительные сроки и низкое качество расследования и ...

Скачать
70243
3
0

... , а явилась результатом сложив­шейся ситуации и той большой подготовительной рабо­ты, которая проводилась еще в 30—40-х годах среди передовых русских исследователей социально-экономи­ческой жизни страны. Земская статистика в истории отечественной статис­тики занимает исключительное место. Земские статистики провели большую работу по де­тальному изучению многих сторон жизни русской дерев­ни, ...

0 комментариев


Наверх