2. Расчет дисперсии по первой группе

x

f

xf

x2

x2f

10 50 50 100 500
11 150 165 121 1815
13 50 65 169 845

 

25

280

 

3160


3. Расчет дисперсии по второй группе

x

f

xf

x2

x2f

15 50 75 225 1125
18 70 126 324 2268
20 30 60 400 1200

 

15

261

 

4593

4. Расчет межгрупповой дисперсии

 

 

 

 

 

11,2 25 -2,325 5,405 135,140
17,4 15 3,875 15,015 225,234

 

40

 

 

360,375

5. Расчет средней из индивидуальных дисперсий

Эмпирическое корреляционное отношение (ЭКО)

На основании правила сложения дисперсий вычисляется эмпирическое корреляционное отношение (ЭКО), которое равно квадратному корню из отношения межгрупповой дисперсии к общей:

Такой порядок вычисления обусловлен разложением общей вариации на вариацию, зависящую от фактора, положенного в основу группировки (в нашем примере – повышение и неповышение квалификации), которая численно равна межгрупповой дисперсии, и общую вариацию.

Межгрупповая дисперсия составляет часть общей дисперсии и складывается под влиянием только одного группировочного фактора. Именно поэтому подкоренное выражение показывает долю вариации за счет группировочного признака.

ЭКО изменяется в переделах от нуля до единицы. Чем ближе его значение к единице, тем большая доля вариации падает на группировочный признак.

В нашем случае

  Некоторые математические свойства дисперсий

(1)  При вычитании из всех значений признака некоторой постоянной величины дисперсия не изменится.

(2)  При сокращении всех значений на постоянный множитель дисперсия уменьшится в раз.

(3)  Средний квадрат отклонений значений признака от постоянной произвольной величины больше дисперсии признака на квадрат разности между средней арифметической и постоянной величиной .

На основании свойств дисперсии ее можно подсчитать способом отсчета от условного нуля и способом моментов.


 

Интервал

 

 

 

 

 

 

 

 

90-100 95 2 190 -30 -3 -6 9 18
100-110 105 6 630 -20 -2 -12 4 24
110-120 115 8 920 -10 -1 -8 1 8
120-130 125 18 2 250 0 0 0 0 0
130-140 135 5 675 10 1 5 1 5
140-150 145 4 580 20 2 8 4 16
150-160 155 3 465 30 3 9 9 27
160-170 165 2 330 40 4 8 16 32
170-180 175 2 350 50 5 10 25 50

 

 

50

6 390

 

 

14

 

180


Экономические индексы Понятие индексов

В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана.

Многие общественные явления состоят из непосредственно несопоставимых явлений, поэтому основной вопрос – это вопрос сопоставимости сравниваемых явлений.

К какому бы экономическому явлению ни относились индексы, чтобы рассчитать их, необходимо сравнивать различные уровни, которые относятся либо к различным периодам времени, либо к плановому заданию, либо к различным территориям. В связи с этим различают базисный период (период, к которому относится величина, подвергаемая сравнению) и отчетный период (период, к которому относится сравниваемая величина). При исчислении важно правильно выбрать период, принимаемый за базу сравнения.

Индексы могут относиться либо к отдельным элементам сложного экономического явления, либо ко всему явлению в целом.

Индивидуальные индексы

Показатели, характеризующие изменение более или менее однородных объектов, входящих в состав сложного явления, называются индивидуальными индексами – ix.

p – цена
q – количество
t – время
T – численность
f – з/п
F – фонд з/п
S – посевная площадь
y – урожайность
z – себестоимость

Индекс получает название по названию индексируемой величины.

В большинстве случаев в числителе стоит текущий уровень, а в знаменателе – базисный уровень. Исключением является индекс покупательной способности рубля.

Индексы измеряются либо в виде процентов (%), либо в виде коэффициентов.

Сводные индексы

Сложные явления, для которых рассчитывается сводный индекс, отличаются той особенностью, что элементы, их составляющие, неоднородны и, как правило, несоизмеримы друг с другом. Поэтому сопоставление простых сумм этих элементов невозможно. Сопоставимость может быть достигнута различными способами:

(1)  сложные явления могут быть разбиты на такие простые элементы, которые в известной степени являются однородными;

(2)  сравнение по стоимости, без разбиения на отдельные элементы.

Цель теории индексов – изучение способов получения относительных величин, используемых для расчета общего изменения ряда разнородных явлений.

Товар Базисный Отчетный
1
2
. . .
n
Индекс стоимости товарооборота Индекс цены товарооборота Индекс физического объема товарооборота
Проблема выбора весов

Если индексируемой величиной является качественный признак, то вес принимается на уровне текущего периода.

Если же индексируемой величиной является количественный признак, то вес принимается на уровне базисного периода.

Такой выбор весов позволяет записать следующую связь:

Сводные индексы в агрегатной форме позволяют нам измерить не только относительное изменение отдельных элементов изучаемого явления и явления в целом в текущем периоде по сравнению с базисным, но и абсолютное изменение.

Например, если мы вычтем из числителя индекса цены его знаменатель, то мы получим абсолютное изменение стоимости товарооборота в результате изменения цен:

То же самое можно сделать для индекса физического объема и для индекса товарооборота.

Средние индексы

Агрегатная форма индекса – одна из важнейших, но не единственная. В практических расчетах очень часто используются средние индексы. Это связано с тем, что, например, в индексе цены пересчет продукции, реализованной в текущем периоде, в базисные цены практически очень сложен. В то время как индивидуальные индексы цены на практике разрабатываются постоянно.

Агрегатный индекс цены тождественен среднему гармоническому индексу цены.

Агрегатный индекс физического объема тождественен среднему арифметическому индексу физического объема.

Проблема связана лишь с прочтением условия задачи.

Цепные и базисные индексы с постоянными и переменными весами

 

Цепные индексы:

Сумма произведений индивидуальных цепных индексов дает базисный индекс за соответствующий период.

Базисные индексы:

Увидим, что частное от деления последующего базисного индекса на предыдущий индекс дает нам цепной индекс за соответствующий период.


С переменными весами

Цепные Базисные С постоянными весам Цепные Базисные

Преимущество сводных индексов с постоянными весами состоит в том, что их можно сравнивать между собой, а также получать цепные индексы из базисных и наоборот.

Для индексов с переменными весами такое правило не сохраняется.

С постоянными весами рассчитываются индексы физического объема продукции, а с переменными весами – индексы цен, себестоимости, производительности труда.

Индекс дефлятора используется для перевода значений стоимостных показателей за отчетный период в стоимостные измерители базисного периода.

Индекс дефлятора ВВП в 1998 г.

Для построения индекса дефлятора можно использовать индексы с переменными весами.

Индексы постоянного состава, переменного состава и структурных сдвигов

В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов.

Индекс постоянного (фиксированного) состава по своей форме тождественен агрегатному индексу.

Объединение

Базисный

Отчетный

p0

q0

p0

q0

1 15 5000 11 20000
2 18 10000 13 15000

Цена по обоим предприятиям изменилась на 27,2 %.

Этот индекс не учитывает изменение объема продажи продукции на различных рынках в текущем и базисном периодах.


Индекс переменного состава используется для характеристики изменения средней цены в текущем и базисном периодах.

Цены снизились на 30 %.

Индекс структурных сдвигов Индексы Пааше, Ласпейреса и "идеальный индекс" Фишера

Сводный индекс цены с базисными весами – это индекс цены Ласпейреса.

Надо отметить, что сводный индекс физического объема с базисными
весами также именуется индексом физического объема Ласпейреса.

Сводный индекс физического объема с текущими весами – это индекс цены Пааше.

Аналогично сводный индекс цены с текущими весами также называется
индексом цены Пааше.

Компромиссом явился "идеальный индекс" Фишера:

Аналогичный индекс можно построить и для индексов физического объема.

Территориальные индексы

В статистике существует необходимость сопоставления уровней экономических явлений в пространстве. Для расчета значений используются территориальные индексы. Для их исчисления соответствующие показатели по всем видам продукции умножаются на количество продукции, произведенной во всей области.

Так как количество продукции каждого вида равно сумме продукции каждого вида в районе А и в районе В, расчет производится по формуле:

–     для района А по сравнению с районом В:

–     для района В по сравнению с районом А:

Индексы планового задания и выполнения плана
Ряды динамики Задачи статистики в области рядов динамики

–     определить объем и интенсивность развития явления при помощи измерения уравнения ряда и средних характеристик;

–     выявить тренд;

–     определить величину колеблемости уровней ряда вокруг тренда;

–     выявить и измерить сезонные колебания;

–     сравнить во времени развитие отдельных экономических показателей;

–     измерить связь между явлениями и процессами.

Понятие и виды рядов динамики

Ряд динамики – это ряд последовательно расположенных статистических показателей (в хронологическом порядке), изменение которых показывает ход развития изучаемого явления.

Ряд динамики состоит из двух элементов: момента (периода) времени и соответствующего ему статистического показателя, который называется уровнем ряда. Уровень ряда характеризует размер явления по состоянию на указанный в нем момент (период) времени. В связи со сказанным различают моментные и интервальные ряды динамики.

В зависимости от способов выражения уровней различают ряды динамики, заданные:

а) рядом абсолютных величин;

б) рядом относительных величин;

в) рядом средних величин.

Несопоставимость уровней рядов динамики

Уровни рядов динамики должны быть сопоставимы между собой. Для несопоставимых величин нельзя вести расчеты показателей рядов динамики.

Несопоставимость может быть:

–     по территории,

–     по кругу охватываемых объектов,

–     из-за разных единиц измерения,

–     из-за изменения уровня явления на различные даты,

–     из-за различного понимания единицы объекта,

–     по структуре.

Смыкание рядов динамики

В большинстве случаев уровни ряда приводятся к сопоставимому уровню путем пересчета. Например может использоваться метод смыкания.

Продукция

1991

1992

1993

1994

1995

1996

22-х предприятий 120 125 130 140
27-и предприятий 170 175 192
Выровненный ряд

80,0

82,2

86,7

100,0

102,5

112,9

Суть метода заключается в том, что уровень 1994 г. принимается за 100 %, а затем производим соответствующий пересчет. Получаем ряд относительных величин.


Показатели изменения уровней ряда

Характеристика показателей изменения уровней ряда достигается путем сравнения уровней ряда между собой.

Здесь различаются базисный и текущий периоды и т.п.

Большой проблемой является выбоп базы сравнения. Этот выбор одлжен быть обусловлен теоретически. База сравнения – это наиболее характерный период в развитии изучаемого социально-экономического явления.

1. Абсолютный прирост

Характеризует размер увеличения (уменьшения) уровней ряда за отдельный промежуток времени. Абсолютные приросты могут быть цепными или базисными.

Цепной: Базисный:

2. Темп роста

Показывает, во сколько раз данный уровень ряда больше или меньше базисного уровня. Представляет собой соотношение двух сравниваемых уровней.

Цепной: Базисный:

Темпы роста выражаются либо в виде процентов, либо в виде коэффициентов. Если темп роста больше единицы (100%), то уровень ряда возрастает, если меньше – то убывает.

3. Темп прироста

Показывает, на какую долю (процент) уровень данного периода или момента времени больше или меньше базового уровня. Темп прироста может быть измерен и как отношение абсолютного прироста к базовому уровню.

4. Абсолютное значение одного процента прироста

Сравнение абсолютного прироста и темпа прироста за одни и те же промежутки времени показывает, что замедление прироста часто не сопровождается уменьшением абсолютных приростов. При замедлении темпов роста абсолютный прирост может увеличиваться, и наоборот.

Средние характеристики ряда динамики

Записанные характеристики ряда динамики относятся к каждому члену динамического ряда. Только базисные характеристики относятся ко всему периоду. Средние же характеристики полностью охватывают изменения за весь период, к которому относится динамический ряд.

1. Средний уровень ряда.

Показывает, какова средняя величина уровня, характерного для всего периода. Имеет смысл рассчитывать, когда величина изменения ряда более или менее стабильна.

Средний уровень ряда исчисляется по средней хронологической. Ее расчет для интервального и моментного ряда имеет свои особенности. Для интервального ряда, уровни которого можно суммировать, можно исчислять по средней арифметической простой.

Для моментного ряда с равноотстоящими уровнями:


Для моментного ряда с неравноотстоящими интервалами:

Например, даны следующие данные:

01.01.98 – 455 01.07 – 465 01.11 – 495 01.01.99 – 505

01.05 – 465 01.10 – 485 01.12 – 505

2. Средний абсолютный прирост

Показывает скорость развития явления в изучаемом динамическом ряду. Он получается из абсолютных приростов как их средняя арифметическая. Может быть получен также как отношение абсолютного прироста за весь период к числу уровней без одного.


Информация о работе «Лекции по предмету статистика»
Раздел: Статистика
Количество знаков с пробелами: 71543
Количество таблиц: 41
Количество изображений: 0

Похожие работы

Скачать
57032
34
3

... финансов институциональных единиц)» Институциональная единица - хозяйствующий субъект, имеющий юридическое лицо, активы и обязательства (т.е. предприятия, занимающиеся определенной деятельностью). Предметом статистики финансов предприятия является количественная сторона финансово-денежных отношений в неразрывной связи с их качественными особенностями по поводу образования, распределения и ...

Скачать
107296
21
0

... . 4 1 - 3 9 Статистическое изучение динамики правовых явлений (ряды динамики в правовой статистике). 4 - - 4 10 Статистические методы изучения взаимосвязей. Комплексный статистический анализ. 4 - - 4 ИТОГО: 40 6 2 32 2.3 Учебная программа дисциплины   Содержание лекционного курса Тема 1. Общее понятие статистики и ее отраслей. Современная организация статистики в ...

Скачать
81539
26
0

... . Практикум. За ред. Єріної А.М., Пальянс З.А. – синій колір, стислий виклад теорії, приклад рішень, задачі. Рекомендується! 2. Ковтун Н.В., Столяров В,С. Загальна теорія статистики. Курс лекцій. К.: Хвиля, 1996. 3. Общая теория статистики. Учебник. Под общей редакцией проф. Елисеевой И.И. М.: Финансы и статистика, 1995. 4. Общая теория статистики. Учебник. Под редакцией Ефимовой М.Р. М.: 1996. 5. ...

Скачать
96456
0
0

... в СМИ. В процессе аудиторской проверки аудиторская фирма рассматривает следующие направления: ü  соблюдение действующего законодательства и нормативных актов Банка России по совершаемым операциям; ü  состояние бухгалтерского учёта и отчётности по совершаемым операциям; ü  выполнение обязательных экономических нормативов, установленных Банком России; ü  качество управление ...

0 комментариев


Наверх