1. Предмет статистики как науки. Задачи статистики в условиях рыночной экономики.
Статистика - от латинского слова status - состояние или положение вещей.
Статистика - государствоведение. Слово статистика многомерно. В 1740 г. Было сделано первое определение понятия статистика. Как наука возникла в 18 веке.
Статистика - отрасль общественных наук, имеющая целью сбор, упорядочение, анализ и сопоставление фактов, относящихся к самым разнообразным массовым явлениям.
Статистика, как наука подразделяется на:
теорию статистики,
макроэкономическую статистику,
экономическую статистику,
отраслевую статистику.
Каждая отрасль имеет свою статистику. Статистика развивается как отдельная наука. Отраслевая статистика дополняет теорию статистики.
Теория статистики является основополагающей дисциплиной и служит фундаментом для применения статистического метода анализа для хозяйственных субъектов. На любом уровне и в любой сфере эффективность использования статистики во многом определяется качеством исходной информации.
В определении статистики:
совокупность числовых или цифровых данных характеризующих разные стороны жизни государства (экономическую, политическую жизнь общества),
отрасль знаний имеющую свои принципы и методы,
отрасль практической деятельности общества (сбор, обработка, анализ данных).
Предметом статистики является количественное измерение становления многоукладной экономики, с целью получения информации о качественных показателях различных форм хозяйствования с тем, чтобы проводить сопоставительный анализ их деятельности.
Статистика изучает массовые общественные явления. Массовые общественные явления - это явления, которые встречаются в больших количествах, но отличаются друг от друга величиной определенного признака.
Статистика изучает закономерности развития с помощью количественных показателей, поэтому она определяет размеры, уровни и величины различных явлений, изучает структуру явлений, динамику явлений, взаимодействие явлений.
Задачи статистики:
Переход от отраслевого принципа сбора информации к статистики предприятия. Статистика предприятия дает достаточную информацию для взаимосвязанного анализа функционирования рынков труда, капитала, товаров и услуг.
Переход на качественно новые международные стандарты в области статистики цен, занятости, стоимости рабочей силы и уровня жизни населения.
Создана основа для широкого применения разнообразных математических и статистических методов для расчетов и контроля надежности статистических данных.
Создана система статистических показателей для 3-х уровней управления: федерального (макроэкономические показатели), территориального (отрасли и сектора экономики), предприятий (статистика предприятий).
2.Метод группировок в статистике и его применение в статистике.
В зависимости от целей и задач различают:
простую сводку,
сложную сводку.
Простая сводка - подсчет итогов по одному признаку.
Сложная сводка включает статистическую группировку - это расчленение изучающейся совокупности на однородные группы по существенному для них признаку и представления результатов группировки и сводки в виде таблицы.
Задачи:
выделение группового признака,
определение числа групп и интервалов,
обоснование системных показателей по группам,
построение рядов распределения и статистических таблиц.
Виды статистических группировок:
типологические группировки (группы промышленных предприятий по формам собственности в 1995 г.)
структурные группировки (все принимается за 100%)
аналитические группировки по факторному признаку, который является причиной суммирования результативного признака.
Пример:
№ | Формы собственности | 1995 г. |
1 | государственная | 5,3 % |
2 | муниципальная | 2,7 % |
3 | собственность общественных организаций | 2,3 % |
4 | частная | 72,6 % |
5 | смешанная | 18,6 % |
В зависимости от числа признаков положенных в основу группировки различают:
простая (по одному признаку),
комбинированная или комбинационная (по двум и более признакам),
многомерная (более трех).
Сложные группировки могут быть количественные (число) и атрибутивные (пол, возраст, территория).
Классификация - это устойчивая группировка по атрибутивному признаку, которая дает подробный перечень рассматриваемых статистических показателей.
Задача определения числа групп:
по формуле Стержесса:
n=1+3.322lgN, N - число всей изучаемой совокупности.
Величина интервала (i): i= (xmax-xmin)/n=R/n, где R - размах вариации
s= ((xi-xср)2/n))1/2 - среднее квадратичное отклонение
Число групп определяется с помощью показателя среднего квадратичного отклонения (правильно определяет меру вариации признака).
Если величина интервала 0,5s, то совокупность разбивается на 12 групп, если величина интервала 2/3s или s - 9 или 6 групп.
Интервалы:
равные,
не равные,
открытые,
закрытые,
прогрессивно убывающие,
прогрессивно возрастающие,
специализированные.
... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...
... распределения генеральной совокупности F(x) и – эмпирической функция распределения Fn(x) , построенной по выборке х1,…,хn, называется функция. Теорема. Если F(x) непрерывна, то распределения статистики Колмогорова Dn не зависит от F(x). Условные математические ожидания и условные распределения. Св-ва условных мат. ожиданий. Аналоги формул полной вероятности и формулы Байеса для мат. ожиданий ГММЕ ...
... дает возможность статистического моделирования, происходящих в населении процессов. Потребность в моделировании возникает в случае невозможности исследования самого объекта. Наибольшее число моделей, применяемых в статистике населения, разработано для характеристики его динамики. Среди них выделяются экспоненциальные и логистические. Особое значение в прогнозе населения на будущие периоды имеют ...
... на задний план традиционными постановками. Несколько лет назад при описании современного этапа развития статистических методов нами были выделены [29] пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика, робастность, бутстреп, интервальная статистика, статистика объектов нечисловой природы. Обсудим их. 5. ...
0 комментариев