6 Технология полупроводниковых биполярных и МДП ИМС
Итак, теперь мы подошли вплотную к основным технологическим операциям изготовления интегральных микросхем.
Современные интегральный микросхемы (в дальнейшем – ИМС) можно разделить на два класса: полупроводниковые и гибридные. К гибридным относятся ИМС, в которых содержатся отдельные навесные элементы. К полупроводниковым относятся ИМС, все элементы которой выполняются в объеме или на поверхности единой полупроводниковой подложки. В процессе изготовления такой схемы необходимо избирательно формировать транзисторы, диоды, резисторы, конденсаторы и их соединения на одной полупроводниковой пластине – подложке и обеспечивать достаточно хорошую изоляцию, исключающую паразитное взаимодействие между ними.
6.1 Элементы ИМС
Технология ИМС предполагает значительное отличие элементной базы от обыкновенной электротехники. На рис 13 представлены основные элементы ИМС.
Полупроводниковая ИМС имеет общую подложку из кремния р-типа. На ней выполняются транзисторы (рис 14 а), резисторы (рис 14 б), конденсаторы (рис 14 в) и диоды.
Диоды образуют из транзисторных структур, используя различные способы соединений их электродов.
Имеется пять способов включения транзистора как диода, отличающихся различной крутизной прямой ветви ВАХ и временем восстановления обратного сопротивления. Наименьшее время переключения имеет диод, одним электродом которого служит эмиттер, а другим – соединенные вместе коллектор и база.
Полупроводниковые резисторы изготовляют одновременно с активными элементами. Они обычно выполняются в виде прямоугольного слоя полупроводника при базовой диффузии и называются диффузионными. В таких резисторах используется объемное сопротивление материала, имеющего определенную степень легирования. Диффузионные резисторы могут иметь номинальные значения сопротивлений от нескольких ом до двух десятков килоом.
Конденсаторы полупроводниковых ИМС выполняются двух видов. Часто в качестве конденсаторов используют смещенный в обратном направлении р-n переход. Емкость такого конденсатора зависит от величины обратного напряжения, а последовательно с ней всегда оказывается включенным большое объемное сопротивление полупроводникового материала. Таким образом можно изготовить конденсаторы емкостью до сотни пикофарад. Другой разновидностью являются металл-окисел-полупроводниковые конденсаторы, которые образуются областью n+-типа (от эмиттерной диффузии) и металлической пленкой алюминия, разделенными слоем двуокиси кремния. Эти конденсаторы могут иметь емкость до нескольких сотен пикофарад.
Рассмотренные элементы полупроводниковых ИМС обладают паразитными компонентами, ограниченным диапазоном номинальных значений и весьма малыми рассеиваемыми мощностями. При разработке топологии ИМС необходимо стремиться к исключению паразитных связей между ее элементами и к обеспечению требуемого теплоотвода.
6.2 Изготовление биполярных ИМС с изоляцией p-n переходами
На рис 15 показана структура интегрального n-р-n-транзистора изолированного p-n переходом. В этом транзисторе подложкой является кремний р-типа; на ней созданы эпитаксиальный n-слой и так называемый скрытый n+-cлoй. Изолирующий р-n-переход создается путем диффузии акцепторной примеси на глубину, обеспечивающую соединение образующихся при этой диффузии р-областей с р-подложкой. В этом случае эпитаксиальный n-слой разделяется на отдельные n-области (изолирующие «карманы»), в которых и создаются потом транзисторы. Эти области будут электрически изолированы только в том случае, если образовавшиеся р-n переходы имеют обратное включение. Это достигается, если потенциал подложки n-р-n транзистора будет наименьшим из потенциалов точек структуры. В этом случае обратный ток через р-n переход незначителен и практически исключается связь между n-областями (карманами) соседних транзисторов.
Теперь, зная принцип изоляции p-n переходом, и воспользовавшись материалом предыдущих пунктов, можно дать развернутое описание технологии.
а) Изготовление биполярных ИМС методом разделительной диффузии насквозь эпитаксиального слоя (рис 16) состоит из двух этапов: изготовления эпитаксиальной структуры со скрытыми n+-областями (а-в) и изготовления биполярной ИМС на этой структуре (г-з).
|
Эпитаксиальный n-слой выращивают обычно хлоридным методом. Толщина слоя 3 ¸ 25 мкм в зависимости от назначения ИМС.
По рассмотренной технологии изготавливают ИМС первой и второй степени интеграции. Возможности процесса для получения более высоких степеней интеграции ограничены из-за ряда недостатков ИМС: наличия больших токов утечки, большой площади изолирующего р-n перехода, а значит и емкости паразитной связи, низкой радиационной стойкости.
б) Изготовление биполярных ИМС методом коллекторной изолирующей диффузии (КИД) – изолированные карманы и одновременно коллекторные n+n++-области формируются в процессе диффузии донорной примеси сквозь тонкий (1 ¸ 2 мкм) эпитаксиальный p-слой (рис 17). Для изолирующей диффузии необходимы окна в SiO2-маске (на рисунке не указаны), перекрывающие скрытые n+-области. После диффузии получаются изолированные n+p-карманы. Базовая p+-диффузия проводится без SiO2-маски, что исключает фотолитографию и упрощает технологический процесс.
В КИД-технологии число фотолитографий уменьшается по сравнению с предыдущим процессом. Область коллектора сильно легирована, поэтому нет необходимости для повышения быстродействия ИМС проводить дополнительную диффузию золота или другой понижающей время жизни неосновных носителей тока примеси. Однако в эпитаксиальной базе дрейф носителей от эмиттера к коллектору уменьшен, что понижает быстродействие ИМС. Кроме этого тонкий эпитаксиальный слой ограничивает пробивное напряжение коллектор-база из-за распространения объемного заряда в базовую область.
... образом наносят шесть слоев. Это покрытие обладает малой усадкой и плотной структурой. Исходя из вышеперечисленных сравнений выбран для защитного покрытия от действия влаги лак УР-231.6. Описание технологического процесса изготовления печатной платы комбинированным позитивным способом. Технологический процесс изготовления печатной платы комбинированным позитивным методом состоит из следующих ...
... частота лежит вне диапазона в рабочих частотах проектируемого устройства, следовательно, влияние на работу устройства она не оказывает. 5 Выбор и обоснование технологического процесса сборки и монтажа печатных плат Методы сборки и монтажа печатных плат можно классифицировать по степени автоматизации сборочного – монтажных работ. При этом можно выделить следующие методы сборки: Ручная: Ручная ...
... , в тех случах усложняется, но, тем не менее, это оказывается оправданным, когда другие способы уплотнения монтажа приводят к еще большим технологическим трудностям. Схема технологического процесса изготовления многослойных печатных плат методом металлизации сквозных отверстий показана на рис. 1.23. Метод металлизации сквозных отверстий, по-существу единственный метод создания конструкций с ...
... мкм по подслою никеля. 3.5 Топология токопроводящего рисунка Характер проводящего рисунка во многом определяет технологичность конструкции, надежность производства печатных плат. Анализ практики производства позволяет сформулировать ряд правил для конструирования печатного рисунка. При трассировке проводников следует избегать острых углов. Во внутреннем пространстве такого угла образуется ...
0 комментариев