Стоячие волны. Рефракция

143609
знаков
73
таблицы
14
изображений

20. Стоячие волны. Рефракция

Мы рассмотрели стоячие волны для Y-функции в бесконечно глубокой одномерной потенциальной яме. Но и в других случаях стационарное решение уравнения Шрёдингера представляет собой стоячую волну, хотя это не всегда столь очевидно.

Какой может быть, например, стоячая волна Y-функции электрона в поле протона, в атоме водорода? Ведь в этом случае, вроде бы, вообще нет каких-нибудь отражающих волну стенок. И в этой связи мы вспомним о явлении, которое, вообще говоря, заслуживает более детального разговора, - о рефракции.

Говоря о прямолинейности распространения света, например, мы подразумевали однородную среду. Но в неоднородной среде направление распространения волны не остается постоянным.

Z

 

1

 

 

 

2

Пусть в неоднородной среде распространяется волна с плоским фронтом. И пусть скорость волны (фазовая) возрастает в направлении оси Z, параллельной фронту. Основываясь на принципе Гюйгенса-Френеля, рассмотрим каждую точку фронта волны как источник вторичных волн. Тогда “новый” фронт (плоскость, касательная к волновым поверхностям вторичных источников) не будет параллелен старому, будет происходить искривление луча, понимаемого как кривая, касательная к которой перпендикулярна фронту волны. Вот это явление “искривления” луча в неоднородной среде и называется рефракцией.

Проявления рефракции весьма разнообразны, и подробный разговор о ней мог бы быть достаточно интересен. Но - нельзя объять необъятное и особенно за весьма ограниченное время, которое есть в нашем распоряжении. Однако, посмотрим, как это явление проявляется в атоме водорода.

В поле протона по мере увеличения радиуса потенциальная энергия электрона возрастает. При постоянной полной энергии E = const это означает уменьшение кинетической энергии, уменьшение импульса:

; .

Так что уменьшение импульса означает и увеличение фазовой скорости v при увеличении радиуса r. Таким образом, луч электронной волны будет искривляться в направлении к протону и при определенных условиях может стать окружностью. При каких?

Условие, которое должно быть выполнено, достаточно очевидно. Поскольку длина окружности пропорциональна радиусу, пропорциональной радиусу должна быть и фазовая скорость. Таким образом мы получаем:

.

Исключив фазовую скорость, получим выражение для зависимости импульса от радиуса:

.

Запишем вновь выражение для энергии электрона и продифференцируем его по радиусу. С учетом выражения для  и условия E = const мы получим:

.

Нам осталось лишь потребовать выполнения очевидного для существования стоячей волны условия - на длине орбиты должно укладываться целое число длин волн :

.

Из двух подчеркнутых выражений следует:

.

Таким образом, выражение для энергии электрона принимает вид:

.

Это выражение для электрона совпадает с точным значением, полученным из решения уравнения Шрёдингера. Наши оценочные расчеты никак не избавляют от необходимости решать это уравнение. Они должны лишь помочь понять, что квантовое состояние электрона в атоме описывается стоячей волной.

21. “Внутреннее движение” квантового состояния

Все то, о чем мы сейчас ведем речь, вообще говоря, не имеет прямого отношения к решению задач о поведении электрона в том или ином случае. Просто слишком часто квантовая физика противопоставляется классической, тогда как в ряде своих проявлений новая физика оказывается прямой “наследницей” старой.

Мы говорили о том, что принципиально новое привносит квантование в физику. Неплохо отметить и те воззрения, что могут быть оставлены без изменений.

Обратимся вновь к задаче об электроне в потенциальной яме. Квадрат модуля Y-функции для любого n является функцией координаты, не зависит от времени:

.

Никакого “движения материи” в этом выражении не видно. И тем не менее энергию электрона мы можем подсчитать как кинетическую энергию , тем не менее на стенку ямы действует сила . В этом не будет ничего загадочного, если мы не станем отказывать волне Y-функции в реальности, будем помнить, что стоячая волна представляет собой сумму бегущих в противоположных направлениях волн, которые отражаются от стенок. Волна переносит импульс и при отражении происходит изменение его направления. Конечно, как непрерывный процесс, а не “мгновенное”, как при корпускулярном представлении электрона.

При этом то обстоятельство, что функция  не зависит от времени, дает хорошее, естественное объяснение того, почему в стационарном состоянии не происходит излучения электромагнитной энергии - нет колебаний электрического заряда.

 

Линейному волновому уравнению Шрёдингера удовлетворяет и волновая функция, представляющая собой суперпозицию двух (стоячих) волн с разными частотами и волновыми числами:

.

Квадрат модуля этой функции:

.

Выражение получается достаточно громоздким, но легко видеть, что его можно записать в виде:

.

Если не придумывать для квантового объекта какого-то нового способа излучения электромагнитной энергии кроме осцилляции заряда, то это выражение “объяснит” нам, почему при переходе электрона с одного энергетического уровня на другой, в процессе такого перехода происходит поглощение или излучение электромагнитной энергии на частоте .

Иногда говорят, что наблюдаются только стационарные состояния электрона, например, в случае атома водорода

.

Пожалуй, можно сказать, что это утверждение верно с точностью до наоборот: наблюдается, собственно, излучение или поглощение электромагнитной энергии, которые происходят при изменении энергии электрона от одного квантованного значения до другого. Если, конечно, признать, что процесс, например, излучения занимает некоторое время, и что в квантовой физике выполняется закон сохранения энергии.

Подчеркну еще раз: предлагаемые рассуждения никаким образом не влияют на практическое решение квантовомеханических задач. Речь идет только о “картинке” процесса, которую Вы можете иметь у себя в голове. Если Вам понятнее утверждение, что в квантовой физике излучение никак не связано с осцилляцией заряда, то - воля Ваша. Правда, давно было сказано: “Не умножай число сущностей без надобности”.

Но при этом необходимо отметить и такое обстоятельство. Экпериментально наблюдать осцилляцию заряда мы не можем - при попытке такого наблюдения разрушится “хрупкая индивидуальность квантового состояния”. Об осцилляции свидетельствует лишь то, что происходит излучение или поглощение электромагнитной энергии.


Информация о работе «Лекции по физике»
Раздел: Физика
Количество знаков с пробелами: 143609
Количество таблиц: 73
Количество изображений: 14

Похожие работы

Скачать
27693
7
32

... свойства. А.у.т. - тело, для которого силы однозначно определяют деформации и наоборот. Правильность выбранной абстракции подтверждается совпадением, определенной точностью результатов теории и опыта. Физика - наука, устанавливающая закономерные связи посредством наблюдений явлений в природе и посредством лабораторных опытов. Согласие результатов научного анализа с результатами опыта - критерий ...

Скачать
25258
0
3

... так, как большинство материалов относится к устному творчеству, откуда и были получены, также есть выдержки из книг: «Физики шутят», «Физики продолжают шутить», «Сборник задач по физике» Г. Остера. Шутки, которые шутят физики. Один математик спросил коллегу, известного своими религиозными убеждениями: - Вы, что же, верите в единого ...

Скачать
27836
0
0

... фара́да). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф = Кл/В = A·c/B Единица названа в честь английского физика Майкла Фарадея Фарад — очень большая ёмкость. Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с ...

Скачать
23944
0
0

... гальванометра отклонялась (то же происходило и при поднятии электромагнита из катушки). Эта схема напоминает рисунок из лабораторного журнала Фарадея. Удивительно, как схожи оказались эксперименты двух великих физиков, работавших независимо друг от друга на разных континентах! В своей статье, написанной уже после знакомства с опытом Фарадея, Генри, отдавая должное английскому физику, подчеркнул, ...

0 комментариев


Наверх