Квантование момента импульса

143609
знаков
73
таблицы
14
изображений

22. Квантование момента импульса

Другое “скрытое движение” внутри квантового объекта проявляется в наличии момента импульса его состояния. В случае, например, стоячей электронной волны в поле ядра атома момент импульса не определяется с помощью суммирования элементарных моментов импульсов, его (момента импульса) наличие или отсутствие явной связи с некоторым движением не обнаруживает. Однако, у нас нет и оснований считать, что момент импульса в этом случае создается как-то иначе, чем в физике обыкновенной, как-то без движения. Вспомните, что мы говорили об импульсе электрона в одномерной потенциальной яме.

При решении уравнения Шрёдингера определяется лишь модуль (точнее, квадрат модуля) момента импульса и одна из проекций (составляющих?) момента импульса. Но - не любая, а лишь проекция на ось симметрии квадрата модуля волновой функции (ось квантования). Так что обычное небрежное замечание, что может быть определена лишь одна из проекций Mx, My или Mz значит не более, чем утверждение, что ось квантования мы можем обозначить любой буквой. И направить ее, как нам захочется

Попробуем представить себе обособленный, не испытывающий внешних воздействий атом. Как направлен его момент импульса? Как направлена ось симметрии состояния? Видимо, ответ должен быть такой - как угодно. Положим, мы хотим определить эти направления. Если Вы сразу вспомните, что измерения характеристик квантового состояния сопряжены с изменением самого состояния, это очень хорошо. Но - тем не менее.

Направление момента импульса нам определить никак не удастся - оно не определяет каких-нибудь физических процессов или их характеристик. И здесь мы встречаемся с изумительной гармонией: то, что мы не можем определить экспериментально, не может быть и рассчитано. И это, видимо, должно нас радовать, это означает, что наши уравнения описывают реальные физические процессы. Эта гармония не является особенностью квантовой механики. Так же обстоит дело и с потенциальной энергией - она определена с точностью до произвольного слагаемого. Экспериментально определяется только изменение, приращение потенциальной энергии. Соответственно, у нас нет и возможности рассчитать однозначное ее значение.

Теперь - ось квантования. Если мы поместим атом в электрическое или магнитное поле, она окажется направленной вдоль поля. Магнитное квантовое число m определяет составляющую момента импульса электрона вдоль оси квантования. Экспериментально это проявляется в том, что в результате взаимодействия с полем изменяется энергия состояния. Это изменение энергии пропорционально величине магнитного поля и составляющей магнитного момента вдоль оси квантования. Величина магнитного момента считается пропорциональной механическому моменту, и изменение энергии электрона в магнитном поле, таким образом, связывается с магнитным квантовым числом. Почему оно так и называется.

23. Классический гироскоп в магнитном поле

Момент импульса электрона (атома) не может быть направлен вдоль оси квантования, как иногда говорят, вдоль “физически выделенного направления”. Бытует мнение, что это одна из особенностей квантовой механики. Я хочу обсудить этот вопрос применительно к классической физике.

Будем рассматривать гироскоп в виде несущего некоторый заряд кольца. Гироскоп обычно определяют как тело, имеющее ось симметрии и быстро раскрученное вокруг этой оси. Момент импульса такого гироскопа направлен вдоль его оси симметрии.

Z

Dq

Поместив вращающееся заряженное кольцо в магнитное поле, мы легко убедимся, что действующий на него момент сил равен нулю. В самом деле, действующая на любой выделенный участок кольца с зарядом Dq сила имеет нулевой момент относительно центра кольца.

Однако, такое движение гироскопа представляет собой лишь частный случай. В общем случае направление момента импульса не обязательно совпадает с осью симметрии гироскопа. Такое движение можно легко наблюдать, подбросив с закручиванием какой-нибудь диск (например, плоскую тарелку) в воздух. Почти наверняка Ваш диск в полете будет покачиваться. Происходит это потому, что в отсутствии моментов внешних сил момент импульса остается постоянным, а ось симметрии, не совпадающая с моментом импульса, описывает конус вокруг его направления.

Z O’

 

Dq  

  Dq

 

 O

Рассмотрим именно такое движение заряженного кольца в магнитном поле. Выделим два малых участка кольца с зарядами Dq на концах диаметра, который лежит в одной плоскости с вектором момента импульса  и осью симметрии OO’. Хотя поле  параллельно вектору момента импульса, момент сил относительно центра кольца отличен от нуля.

Этот результат наводит на определенные размышления. Во-первых, он означает, что в общем случае момент импульса гироскопа, несущего электрический заряд, и в классической физике не может совпадать с направлением магнитного поля. И другое, быть может, более важное.

Момент импульса и магнитный момент, которым определяется взаимодействие такого гироскопа с магнитным полем, не направлены по одной прямой. Не рассматривая этой задачи более подробно, я хочу лишь обратить Ваше внимание на то, что при анализе поведения атома в магнитном поле без какого-нибудь обоснования считается, что эти векторы направлены по одной прямой.

Но все это только наводит на определенные размышления. Каких-нибудь выводов я здесь делать не хочу.

24. Эпилог

Мы с Вами заканчиваем разговор о физике в рамках “физики общей”. В разделе “Механика и молекулярная физика” за основу было взято рассмотрение механического движения в приближении материальной точки, твердого тела, деформируемого тела и молекулярного движения, для описания которого оказалось необходимым использование вероятностного подхода.

В разделе “Электричество и магнетизм” мы сосредоточились на рассмотрении стационарных или квазистационарных полей. Собственно, одного - электромагнитного поля.

Наконец, третий раздел “Волны” был посвящен рассмотрению волновых процессов и закончился обсуждением явления, которое обычно называют волновыми свойствами частиц. Здесь мы обсудили некоторые вопросы интерпретации представлений квантовой физики. Считая, что это не вопрос общей физики, математического аппарата и большинства результатов, полученных квантовой физикой, я не касался.

Курс получился достаточно сложный. Я все время старался, чтобы обсуждаемые явления и результаты были понятны. Увы, это очень несовременный подход. В чем это проявляется? Например, уже в том, что последняя книжка Савельева названа учебником. До того учебников по физике для ВУЗов не существовало. Были только учебные пособия. В разных пособиях некоторые вопросы иногда трактовались по-разному. Учебники такой вольности не допускают.

Современным, к сожалению, часто оказывается формальное запоминание и пересказ предложенного материала на экзамене. Как заметил один китайский профессор, “похоже, мы учим студентов не физике, а тому, как сдать экзамен”. Не случайно слова “получить образование” прочно забыты. Сейчас при обучении “даются знания”. Такой способ учебы раньше назывался зубрежкой. Сейчас это норма.

Очень может быть, что при обсуждении проблем квантовой физики я был в чем-то очень не прав. Но и частое предложение давать квантовые представления в рецептурном плане мне очень не нравится - как можно отказываться от хотя бы попыток понять смысл физики? Понимать сложно, но только в понимании смысл образования.

На этом я прощаюсь с Вами, впрочем, пока что только до экзамена. Последнего Вашего экзамена по общей физике.


[1][1] [1] : Р.Фейнман,Р.Лейтон,М.Сэндс, “Фенмановские лекции по физике”, вып.3, М., Мир, 1977, гл.37, с.202.

[2][2] [1] : с.202

[3][3] [2] : Р.Фейнман,Р.Лейтон,М.Сэндс, “Фенмановские лекции по физике”, вып.8, М., Мир, 1978, гл.1, с.15.

[4][4] [3]: И.В.Савельев, Курс физики, т.3, М., Наука, с.59.

[5][5] [3], с.61.

[6][6] [1], с.216.

[7][7] [4]: В.Вайскопф, ”Физика в двадцатом столетии”, М., Атомиздат, 1977г, с.41.

[8][8] [4], с.41.

[9][9] [3], с.108.

[10][1] [4]: В.Вайскопф, ”Физика в двадцатом столетии”, М., Атомиздат, 1977г, с.58.

[11][2] [4], с.47.

[12][3] [4], с.37.

[13][4] [4], с.39.

[14][5] [4], с.38.

[15][6] [4], с.40.


Информация о работе «Лекции по физике»
Раздел: Физика
Количество знаков с пробелами: 143609
Количество таблиц: 73
Количество изображений: 14

Похожие работы

Скачать
27693
7
32

... свойства. А.у.т. - тело, для которого силы однозначно определяют деформации и наоборот. Правильность выбранной абстракции подтверждается совпадением, определенной точностью результатов теории и опыта. Физика - наука, устанавливающая закономерные связи посредством наблюдений явлений в природе и посредством лабораторных опытов. Согласие результатов научного анализа с результатами опыта - критерий ...

Скачать
25258
0
3

... так, как большинство материалов относится к устному творчеству, откуда и были получены, также есть выдержки из книг: «Физики шутят», «Физики продолжают шутить», «Сборник задач по физике» Г. Остера. Шутки, которые шутят физики. Один математик спросил коллегу, известного своими религиозными убеждениями: - Вы, что же, верите в единого ...

Скачать
27836
0
0

... фара́да). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф = Кл/В = A·c/B Единица названа в честь английского физика Майкла Фарадея Фарад — очень большая ёмкость. Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца. Для сравнения, ёмкость Земли (шара размером с ...

Скачать
23944
0
0

... гальванометра отклонялась (то же происходило и при поднятии электромагнита из катушки). Эта схема напоминает рисунок из лабораторного журнала Фарадея. Удивительно, как схожи оказались эксперименты двух великих физиков, работавших независимо друг от друга на разных континентах! В своей статье, написанной уже после знакомства с опытом Фарадея, Генри, отдавая должное английскому физику, подчеркнул, ...

0 комментариев


Наверх