4.2. Один раз в сутки.
· Промыть и очистить катодный отсек от образовавшегося сернокислого бария;
· Заменить растворы во всех отсеках датчика;
· Протереть стеклянный шарик измерительного электрода датчика ватой, смоченной 0,1N раствором соляной кислоты;
· Проверить сходимость показаний, выполнив 3-5 измерений со стандартными образцами стали.
4.3. Один раз в месяц.
· Произвести отмывку катодного и анодного отсеков 10-20%-ным раствором соляной кислоты;
· В случае снижения расхода охлаждающей воды через систему охлаждения и фурму промыть систему 40-50%-ным раствором уксусной кислоты для удаления из неё накипи и осадков;
· Сменить засыпку (ангидрон) в фильтре блока газоподготовки;
· Сменить кварцевую засыпку в фильтре газоотборника. Загрязнённую засыпку фильтра восстановить, промыв её в серной кислоте, тщательно отмыв проточной и затем дистиллированной водой и, наконец, высушив.
III. Кулонометрический анализ.
Кулонометрический анализ основывается на измерении количества электричества, затраченного на количественное осуществления донного электрохимического процесса в данной пробе.
Определение количества прошедшего через испытуемый раствор электричества и называется кулонометрией.
Кулонометрические определения проводятся в условиях, исключающих возможность протекания побочных процессов, чтобы выход по току применительно к осуществляемому электрохимическому составлял 100%.
Кулонометрический метод может быть применён для определения не только металлов, но и целого ряда других сложных веществ при их количественном электровосстановлении на катоде или электроокислении на аноде.
Осадка на электроде при этом не получается, полученный продукт остаётся в электролите, и содержание исходного вещества в пробе, как указывалось, оценивается по количеству затраченного на его получение электричества. Это количество электричества определяется при помощи кулонометра.
Кулонометр представляет собой электролизер, включаемый в цепь последовательно с ячейкой для электролиза. Для кулонометра подбирают электрохимический процесс, протекающий со стопроцентным выходом по току и сопровождающийся выделением определённого вещества, количество которого можно легко и точно установить тем или иным способом.
Через оба последовательно соединённых электролизера – электроаналитическую ячейку и кулонометр – пройдёт, естественно, одно и то же количество электричества.
Очень интересен метод, получивший название кулонометрического титрования. От титрования в обычном понимании этого слова этот метод отличается тем, что здесь производится электролитическое генерирование титранта, причём в подавляющем большинстве случаев непосредственно в том же растворе, в котором находится и определяемое вещество. Электрогенерированный реагент вступает во взаимодействие с определяемым веществом и появление малейшего избытка его, свидетельствующего о конце титрования, мгновенно фиксируется специально предусмотренной для этого индикаторной системой. Необходимо, чтобы титрующее вещество реагировало с определяемым быстро и количественно, не взаимодействуя ни с каким другим из имеющихся в данной пробе.
Не говоря о многих прочих преимуществах этого метода, отсутствие необходимости приготовления стандартных растворов, сокращение количества употребляемых реактивов и посуды, универсальность применения однажды собранной установки очень облегчают аналитическую практику.
Так как реагент является здесь продуктом электролиза, то количество его, пошедшее на титрование определяемого вещества, а следовательно, и количество последнего, может быть определено по количеству затраченного за время титрования, вплоть до сигнала о завершении его, электричества. Необходимо, чтобы всё затраченное в процессе титрования электричество расходовалось исключительно на генерирование титранта. Возможность одновременного протекания каких-либо побочных процессов должна быть совершенно исключена. Генерирование титранта должно происходить, таким образом, при 100%-ном выходе по току.
Генерирование титранта производят при контролируемом значении генераторного тока. Поддержание этого тока постоянным (это возможно при достаточном содержании в растворе вещества, продуктом электрохимического разложения которого является титрант) соответствует введению в раствор во времени определённых порций реагента, как это имеет место при обычном титровании.
Метод кулонометрического титрования часто называют кулонометрией при постоянной силе тока и относятся к числу косвенных кулонометрических определений, так как здесь в электрохимическом процессе участвует не само определяемое вещество, а некоторый промежуточный продукт, химически реагирующий затем с этим веществом.
В кулонометрическом титровании применяются различные способы определения эквивалентной точки. Могут быть применены и те же, что и в обычном титровании (например, цветные индикаторы). Однако высокая чувствительность и точность этих методов обусловливает применение и более чувствительных способов индикации, обеспечиваемых инструментальными методами анализа: амперометрией, потенциометрией, спектрофотомерией, фотоэлектроколориметрией.
Кривая кулонометрического титрования может быть вычерчена в координатах: сила тока в индикаторной цепи (по оси ординат) – время (по оси абсцисс). Ясно, что при постоянной силе тока в генераторной цепи время прямо пропорционально количеству добавляемого к титруемой пробе реагента. Эта величина обычно откладывается по оси абсцисс при объёмно-аналитических определениях. Форма кривой титрования будет зависеть от того, какая из окислительно-восстановительных пар – определяемая (кривая а) или генерируемая (кривая б), в качестве титранта – или обе они (кривая в) являются электрохимически обратимыми.
Для потенциометрической индикации конечной точки титрования применяется обычная в потенциометрии электродная пара, состоящая из платинового индикаторного и каломельного электрода сравнения.
При фотометрическом определении конца титрования производится слежение за изменением величины оптической плотности пробы. В этом случае отпадает необходимость в применении индикаторных электродов. Для измерения оптической плотности титруемого раствора пользуются фотоэлектроколориметрами или спектрофотометрами, в соответствующем отделении которых устанавливают кулонометрическую ячейку.
Кулонометрическим путём можно осуществлять бромометрическое, йодометрическое, пермаганатометрическое, титанометрическое, хромометрическое и другие виды титрований.
Подобно другим методам физико-химического анализа, кулонометрия применяется не только в аналитической химии, но и вообще в различных физико-химических исследованиях. Кинетика и механизм реакций, каталитические процессы, комплексообразование, химическое равновесие и т.д. являются теми областями, в которых применение кулонометрии оказывается весьма плодотворным.
Не говоря о многих прочих преимуществах этого метода, отсутствие необходимости приготовления стандартных растворов, сокращение количества употребляемых реактивов и посуды, универсальность применения однажды собранной установки очень облегчают аналитическую практику.
Так как реагент является здесь продуктом электролиза, то количество его, пошедшее на титрование определяемого вещества, а следовательно, и количество последнего, может быть определено по количеству затраченного за время титрования, вплоть до сигнала о завершении его, электричества. Необходимо, чтобы всё затраченное в процессе титрования электричество расходовалось исключительно на генерирование титранта. Возможность одновременного протекания каких-либо побочных процессов должна быть совершенно исключена. Генерирование титранта должно происходить, таким образом, при 100%-ном выходе по току.
Генерирование титранта производят при контролируемом значении генераторного тока. Поддержание этого тока постоянным (это возможно при достаточном содержании в растворе вещества, продуктом электрохимического разложения которого является титрант) соответствует введению в раствор во времени определённых порций реагента, как это имеет место при обычном титровании.
Метод кулонометрического титрования часто называют кулонометрией при постоянной силе тока и относятся к числу косвенных кулонометрических определений, так как здесь в электрохимическом процессе участвует не само определяемое вещество, а некоторый промежуточный продукт, химически реагирующий затем с этим веществом.
В кулонометрическом титровании применяются различные способы определения эквивалентной точки. Могут быть применены и те же, что и в обычном титровании (например, цветные индикаторы). Однако высокая чувствительность и точность этих методов обусловливает применение и более чувствительных способов индикции, обеспечиваемых инструментальными методами анализа: амперометрией, потенциометрией, спектрофотометрией, фотоэлектроколориметрией.
Кривая кулонометрического титрования может быть вычерчена в координатах: сила тока в индикаторной цепи (по оси ординат) – время (по оси абсцисс). Ясно, что при постоянной силе тока в генераторной цепи время прямо пропорционально количеству добавляемого к титруемой пробе реагента. Эта величина обычно откладывается по оси абсцисс при объёмно-аналитических определениях. Форма кривой титрования будет зависеть от того, какая из окислительно-восстановительных пар – определяемая (кривая а) или генерируемая (кривая б), в качестве титранта – или обе они (кривая в) являются электрохимически обратимыми (рис.12).
Для потенциометрической индикации конечной точки титрования применяется обычная в потенциометрии электродная пара, состоящая из платинового индикаторного и каломельного электрода сравнения.
При фотометрическом определении конца титрования производится слежение за изменением величины оптической плотности пробы. В этом случае отпадает необходимость в применении индикаторных электродов. Для измерения оптической плотности титруемого раствора пользуются фотоэлектроколориметрами или спектрофотометрами, в соответствующем отделении которых устанавливают кулонометрическую ячейку.
Кулонометрическим путём можно осуществлять бромометрическое, йодометрическое, пермаганатометрическое, титанометрическое, хромометрическое и другие виды титрований.
Подобно другим методам физико-химического анализа, кулонометрия применяется не только в аналитической химии, но и вообще в различных физико-химических исследованиях. Кинетика и механизм реакций, каталитические процессы, комплексообразование, химическое равновесие и т.д. являются теми областями, в которых применение кулонометрии оказывается весьма плодотворным.
время время время
а) б) в)
Рис.12. Кривые кулонометрического титрования.
IV. Определение углерода в сырье.
Методика количественного химического анализа: окиси хрома, пятиокиси ниобия, ферросилиция, извести, хромовой и марганцевой руды, хромового, ильменитового и марганцеворудного концентратов и железорудных окатышей
Определение массовой доли углерода.
Кулонометрический метод.
Настоящая методика аттестована по результатам метрологической экспертизы в ОАО КЗФ и внесена в заводской реестр методик количественного химического анализа.
4.1. Назначение МВИ
4.1.1. Настоящий нормативный документ устанавливает методику выполнения количественного химического анализа (КХА) массовой доли углерода в окиси хрома по ГОСТ 2912-79, ТУ 645 РК5604173-005-2000, в руде хромовой по ТУ 645 РК 0186760-01-98, в концентрате хромовом по ТУ645 РК0186760-06-98, в марганцевой руде и концентрате марганцеворудном по ТУ 5.965-11491-92, в концентрате ильменитовом, железорудных окатышах по ТУ 0722-002-00186803-97, в пятиокиси ниобия по ГОСТ23920-79,ТУ 1763- 019-00545484-2000, в извести по ГОСТ 9179-77, в ферросилиции по ГОСТ 1415-93 кулонометрическим методом.
4.1.2. Диапазон измерений массовой доли углерода по методике КХА, в % :от 0,005 до 10,0
4.1.3. МВИ предназначена для контроля поступающего сырья, контроля технологических процессов и установления химического состава стандартных
образцов предприятия (СОП).
4.2. Требования к погрешности измерений. Погрешность результатов измерений по настоящей методике КХА не превышает регламентированных ГОСТ15848.4-70 и МУ МО 14-1-61-90 значений норм погрешности, указанных в таблице 2.
Таблица 2. Нормы погрешности измерений (абс. проценты)
Массовая доля углерода, % | Предел допускаемой погрешности D (Р=0,95) | Характеристика случайной составляющей погрешности СКО, Gk |
От 0,005 до 0,010 | 0.004 | 0.0019 |
Св. 0,010 " 0,050 | 0.010 | 0.0043 |
" 0,050 " 0,100 | 0.019 | 0.0087 |
" 0,10 " 0,20 | 0.029 | 0.013 |
" 0,20 " 0,50 | 0.037 | 0.017 |
" 0,50 " 1,00 | 0.05 | 0.022 |
" 1,00 " 2,50 | 0.07 | 0.030 |
" 2,50 " 5,00 | 0.10 | 0.043 |
" 5,00 " 10.,0 | 0.13 | 0.061 |
0 комментариев