1.2 Свойства решений.

Пусть ЗПЛ представлена в следующей записи:

(7)

(8)

(9)

Чтобы задача (7) – (8) имела решение, системе её ограничений (8) должна быть совместной. Это возможно, если r этой системы не больше числа неизвестных n. Случай r>n вообще невозможен. При r= n система имеет единственное решение, которое будет при оптимальным. В этом случае проблема выбора оптимального решения теряет смысл. Выясним структуру координат угловой точки много­гранных решений. Пусть r<n. В этом случае система векторов содержит базис — максимальную линейно независимую подсистему векторов, через которую любой вектор системы может быть выражен как ее линей­ная комбинация. Базисов, вообще говоря, может быть несколько, но не более . Каждый из них состоит точно из r векторов. Переменные ЗЛП, соответствующие r век­торам базиса, называют, как известно, базисными и обо­значают БП. Остальные n – r переменных будут свобод­ными, их обозначают СП. Не ограничивая общности, будем считать, что базис составляют первые m векторов . Этому базису соответствуют базисные переменные , а свобод­ными будут переменные .

Если свободные переменные приравнять нулю, а базис­ные переменные при этом примут неотрицательные значе­ния, то полученное частное решение системы (8) назы­вают опорным решением (планом).

 

Теорема. Если система векторов  содер­жит m линейно независимых векторов , то допустимый план  (10) является крайней точкой многогранника планов.

Теорема. Если ЗЛП имеет решение, то целевая функция достигает экстремального значения хотя бы в одной из крайних точек многогранника решений. Если же целевая функция достигает экстремального значения бо­лее чем в одной крайней точке, то она достигает того же значения в любой точке, являющейся их выпуклой ли­нейной комбинацией.

 

§2.Графический способ решения ЗЛП.

Геометрическая интерпретация экономических задач дает возможность наглядно представить, их структуру, выявить особенности и открывает пути исследования бо­лее сложных свойств. ЗЛП с двумя переменными всегда можно решить графически. Однако уже в трехмерном пространстве такое решение усложняется, а в простран­ствах, размерность которых больше трех, графическое решение, вообще говоря, невозможно. Случай двух переменных не имеет особого практиче­ского значения, однако его рассмотрение проясняет свой­ства ОЗЛП, приводит к идее ее решения, делает геомет­рически наглядными способы решения и пути их практи­ческой реализации.

Пусть дана задача

 (11)

(12)

(13)

Дадим геометрическую интерпретацию элементов этой задачи. Каждое из ограничений (12), (13) задает на плоскости некоторую полуплоскость. Полу­плоскость — выпуклое множество. Но пересечение любого числа выпуклых множеств является выпуклым множест­вом. Отсюда следует, что область допустимых решений задачи (11) — (13) есть выпуклое множество.

Перейдем к геометрической интерпретации целевой функции. Пусть область допустимых решений ЗЛП — не­пустое множество, например многоугольник .

 Выберем произвольное значение целевой функ­ции . Получим . Это уравнение пря­мой линии. В точках прямой NМ целевая функция сохра­няет одно и то же постоянное значение . Считая в ра­венстве (11)  параметром, получим уравнение семей­ства параллельных прямых, называемых линиями уровня целевой функции (линиями постоянного значения).

Найдём частные производные целевой функции по  и

(14)

(15)

Частная производная (14) ((15)) функции пока­зывает скорость ее возрастания вдоль данной оси. Следо­вательно,  и — скорости возрастания  соответст­венно вдоль осей  и . Вектор  называ­ется градиентом функции. Он показывает направление наискорейшего возрастания целевой функции:

Вектор — указывает направление наискорейшего убывания целевой функции. Его называют антигра­диентом.

Вектор перпендикулярен к прямым  семейства

Из геометрической интерпретации элементов ЗЛП вы­текает следующий порядок ее графического решения.

1.          С учетом системы ограничений строим область до­пустимых решений

2.          Строим вектор  наискорейшего возра­стания целевой функции — вектор градиентного направ­ления.

3.          Проводим произвольную линию уровня  

4.          При решении задачи на максимум перемещаем ли­нию уровня  в направлении вектора  так, чтобы она касалась области допустимых решений в ее крайнем по­ложении (крайней точке). В случае решения задачи на минимум линию уровня  перемещают в антиградиентном направлении

5.          Определяем оптимальный план  и экстре­мальное значение целевой функции .

 

§3.Симплексный метод.

Общая идея симплексного метода (ме­тода последовательного улучшения плана) для решения ЗЛП состоит

1)   умение находить начальный опорный план;

2)   наличие признака оптимальности опорного пла­на;

3)   умение переходить к нехудшему опорному плану.

Пусть ЗЛП представлена системой ограничений в каноническом виде:

.

Говорят, что ограничение ЗЛП имеет предпочтительный вид, если при неотрицательной правой части левая часть ограничений содержит переменную, входящую с коэффициентом, равным единице, а в остальные ограничения равенства - с коэффициентом, равным нулю.

Пусть система ограничений имеет вид

Сведем задачу к каноническому виду. Для этого прибавим к левым частям неравенств дополнительные переменные . Получим систему, эквивалентную исходной:

,

 которая имеет предпочтительный вид

.

В целевую функцию дополнительные переменные вводятся с коэффициентами, равными нулю  .

Пусть далее система ограничений имеет вид

Сведём её к эквивалентной вычитанием дополнительных переменных из левых частей неравенств системы. Получим систему

Однако теперь система ограничений не имеет предпочтительного вида, так как дополнительные переменные  входят в левую часть (при ) с коэффициентами, равными –1. Поэтому, вообще говоря, базисный план  не является допустимым. В этом случае вводится так называемый искусственный базис. К левым частям ограниче­ний-равенств, не имеющих предпочтительного вида, добав­ляют искусственные переменные . В целевую функцию переменные , вводят с коэффициентом М в случае реше­ния задачи на минимум и с коэффициентом -М для за­дачи на максимум, где М - большое положительное число. Полученная задача называется М-задачей, соот­ветствующей исходной. Она всегда имеет предпочти­тельный вид.

Пусть исходная ЗЛП имеет вид

(1)

(2)

(3)

причём ни одно из ограничений не имеет предпочтительной переменной. М-задача запишется так:

(4)

(5)

,  ,  (6)

Задача (4)-(6) имеет предпочтительный план. Её начальный опорный план имеет вид

Если некоторые из уравнений (2) имеют предпочтительный вид, то в них не следует вводить искусственные переменные.

 

Теорема. Если в оптимальном плане

(7)

М-задачи (4)-(6) все искусственные переменные , то план  является оптимальным планом исходной задачи (1)-(3).

Для того чтобы решить задачу с ограничениями, не имеющими предпочтительного вида, вводят искусственный базис и решают расширенную М-задачу, которая имеет начальный опорный план

Решение исходной задачи симплексным методом путем введения искусственных переменных  называется сим­плексным методом с искусственным базисом.

Если в результате применения симплексного метода к расширенной задаче получен оптимальный план, в кото­ром все искусственные переменные , то его первые n компоненты дают оптимальный план исходной задачи.

 

Теорема. Если в оптимальном плане М-задачи хотя бы одна из искусственных переменных отлична от нуля, то исходная задача не имеет допустимых планов, т. е. ее условия несовместны.


Информация о работе «Анализ экономических задач симплексным методом»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 33979
Количество таблиц: 2
Количество изображений: 2

Похожие работы

Скачать
34881
6
0

... во многих экономических задачах, приводит к линейной функции с линейными ограничениями, наложенными на неизвестные. 2. Области применения и ограничения использования линейного программирования для решения экономических задач Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление ...

Скачать
23748
27
0

... строки и каждого столбца таблицы (матрицы) определяют спе­циальные числа, называемые потенциалами. С помощью этих потен­циалов можно установить, нужно ли заполнять свободную клетку матрицы или ее нужно оставить незаполненной. Для решения задач методом потенциалов исходный план дол­жен иметь количество заполненных клеток m + n – 1 (m - число строк, n - число столбцов). Если план не отвечает этим ...

Скачать
47200
25
1

... рулонов, при котором все поступающие специальные заявки будут выполнены при минимальных затратах бумаги. Графический метод решения задач линейного программирования   1. Область решений линейных неравенств. Пусть задано линейное неравенство с двумя переменными  и (1) Если величины  и  рассматривать как координаты точки плоскости, то совокупность точек ...

Скачать
38887
29
13

... разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями. Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах ...

0 комментариев


Наверх