6.    Число ограничений прямой задачи равно числу пере­менных двойственной, а число ограничений двойствен­ной — числу переменных прямой.

7.    Все переменные в обеих задачах неотрицательны.

Теорема. Для любых допустимых планов  и прямой и двойственной ЗЛП справедливо неравенство , т.е.

(7) – основное неравенство теории двойственности.

Теорема. (критерий оптимальности Канторовича)

Если для некоторых допустимых планов  и  пары двойственных задач выполняется неравенство , то  и  являются оптимальными планами соответствующих задач.

Теорема. (малая теорема двойственности)

Для су­ществования оптимального плана любой из пары двойст­венных задач необходимо и достаточно существование допустимого плана для каждой из них.

§5. Основные теоремы двойственности

и их экономическое содержание

Теорема.

Если одна из двойственных задач имеет оптимальное решение, то и другая имеет оптимальное решение, причем экстремальные значения целевых функ­ций равны: . Если одна из двойственных задач неразрешима вследствие неограниченности целевой функции на множестве допустимых решений, то система ограничений другой задачи противоречива.

Экономическое содержание первой теоремы двойствен­ности состоит в следующем: если задача определения оптимального плана, максимизирующего выпуск продук­ции, разрешима, то разрешима и задача определения оценок ресурсов. Причем цена продукции, полученной при реализации оптимального плана, совпадает с суммар­ной оценкой ресурсов. Совпадение значений целевых функций для соответствующих планов пары двойственных задач достаточно для того, чтобы эти планы были опти­мальными. Это значит, что план производства и вектор оценок ресурсов являются оптимальными тогда и только тогда, когда цена произведенной продукции и суммарная оценка ресурсов совпадают. Оценки выступают как инструмент балансирования затрат и результатов. Двойст­венные оценки, обладают тем свойством, что они гаранти­руют рентабельность оптимального плана, т. е. равенство общей оценки продукции и ресурсов, и обусловливают убыточность всякого другого плана, отличного от опти­мального. Двойственные оценки позволяют сопоставить и сбалансировать затраты и результаты системы.

Теорема. (о дополняющей нежесткости )

Для того, чтобы планы  и  пары двойственных задач были оптимальны, необходимо и достаточно выполнение условий:

(1)

 (2)

Условия (1), (2) называются условиями допол­няющей нежесткости. Из них следует: если какое-либо ограничение одной из задач ее оптимальным планом обра­щается в строгое неравенство, то соответствующая компо­нента оптимального плана двойственной задачи должна равняться нулю; если же какая-либо компонента опти­мального плана одной из задач положительна, то соответ­ствующее ограничение в двойственной задаче ее опти­мальным планом должно обращаться в строгое равенство.

Экономически это означает, что если по некоторому оптимальному плану  производства расход i -го ресурса строго меньше его запаса , то в оптимальном плане соответствующая двойственная оценка единицы это­го ресурса равна нулю. Если же в некотором оптимальном плане оценок его i -я компонента строго больше нуля, то в оптимальном плане производства расход соответствую­щего ресурса равен его запасу. Отсюда следует вывод: двойственные оценки могут служить мерой дефицитности ресурсов. Дефицитный ресурс (полностью используемый по оптимальному плану производства) имеет положитель­ную оценку, а ресурс избыточный (используемый не полно­стью) имеет нулевую оценку.

 

Теорема .(об оценках). Двойственные оценки пока­зывают приращение функции цели, вызванное малым из­менением свободного члена соответствующего ограниче­ния задачи математического программирования, точнее

(3)

§6. Примеры экономических задач

5.1 Задача о наилучшем использовании ресурсов. Пусть некоторая производственная единица (цех, завод, объеди­нение и т. д.), исходя из конъюнктуры рынка, технических или технологических возможностей и имеющихся ресур­сов, может выпускать n различных видов продукции (то­варов), известных под номерами, обозначаемыми индек­сом j . Ее будем обозначать . Предприятие при производстве этих видов продукции должно ограни­чиваться имеющимися видами ресурсов, технологий, дру­гих производственных факторов (сырья, полуфабрикатов, рабочей силы, оборудования, электроэнергии и т. д.). Все эти виды ограничивающих факторов называют ингре­диентами . Пусть их число равно m; припишем им индекс i . Они ограничены, и их количества равны соответственно  условных единиц. Таким обра­зом,  - вектор ресурсов. Известна экономическая выгода (мера полезности) производства продукции каждого вида, исчисляемая, скажем, по отпуск­ной цене товара, его прибыльности, издержкам произ­водства, степени удовлетворения потребностей и т. д. При­мем в качестве такой меры, например, цену реализации

, т. е. —вектор цен. Известны также технологические коэффициенты , кото­рые указывают, сколько единиц i–го ресурса требуется для производства единицы продукции j-го вида. Матрицу коэффициентов  называют технологической и обо­значают буквой А. Имеем . Обозначим через план производства, показывающий, какие виды товаров  нужно произво­дить и в каких количествах, чтобы обеспечить предприя­тию максимум объема реализации при имеющихся ре­сурсах.

Так как - цена реализации единицы j'-й продукции, цена реализованных  единиц будет равна , а общий объем реализации

Это выражение — целевая функция, которую нужно мак­симизировать.

Так как - расход i-го ресурса на производство  единиц j-й продукции, то, просуммировав расход i-го ресурса на выпуск всех n видов продукции, получим общий расход этого ресурса, который не должен превосхо­дить  единиц:

Чтобы искомый план был реализован, наряду с ограничениями на ресурсы нужно наложить условие неотрицательности на объёмы  выпуска продукции:

 .

Таким образом, модель задачи о наилучшем использовании ресурсов примет вид:

(1)

при ограничениях:

 (2)

(3)

Так как переменные  входят в функцию  и систему ограничений только в первой степени, а показатели  являются постоянными в планируемый период, то (1)-(3) – задача линейного программирования.

 


Информация о работе «Анализ экономических задач симплексным методом»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 33979
Количество таблиц: 2
Количество изображений: 2

Похожие работы

Скачать
34881
6
0

... во многих экономических задачах, приводит к линейной функции с линейными ограничениями, наложенными на неизвестные. 2. Области применения и ограничения использования линейного программирования для решения экономических задач Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление ...

Скачать
23748
27
0

... строки и каждого столбца таблицы (матрицы) определяют спе­циальные числа, называемые потенциалами. С помощью этих потен­циалов можно установить, нужно ли заполнять свободную клетку матрицы или ее нужно оставить незаполненной. Для решения задач методом потенциалов исходный план дол­жен иметь количество заполненных клеток m + n – 1 (m - число строк, n - число столбцов). Если план не отвечает этим ...

Скачать
47200
25
1

... рулонов, при котором все поступающие специальные заявки будут выполнены при минимальных затратах бумаги. Графический метод решения задач линейного программирования   1. Область решений линейных неравенств. Пусть задано линейное неравенство с двумя переменными  и (1) Если величины  и  рассматривать как координаты точки плоскости, то совокупность точек ...

Скачать
38887
29
13

... разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями. Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах ...

0 комментариев


Наверх