5.2 Задача о смесях.

В различных отраслях народного хозяйства возникает проблема составления таких рабочих смесей на основе исходных материалов, которые обеспе­чивали бы получение конечного продукта, обладающего определенными свойствами. К этой группе задач относятся задачи о выборе диеты, составлении кормового рациона в животноводстве, шихт в металлургии, горючих и сма­зочных смесей в нефтеперерабатывающей промышлен­ности, смесей для получения бетона в строительстве и т. д. Высокий уровень затрат на исходные сырьевые материалы и необходимость повышения эффективности производства выдвигает на первый план следующую задачу: получить продукцию с заданными свойствами при наименьших за­тратах на исходные сырьевые материалы.

5.3 Задача о раскрое материалов.

Сущность задачи об оптимальном раскрое состоит в разработке таких техно­логически допустимых планов раскроя, при которых полу­чается необходимый комплект заготовок, а отходы (по длине, площади, объему, массе или стоимости) сводятся к минимуму. Рассмотрим простейшую модель раскроя по одному измерению. Более сложные постановки ведут к задачам целочисленного программирования.

5.4 Транспортная задача.

Рассмотрим простейший ва­риант модели транспортной задачи, когда речь идет о рациональной перевозке некоторого однородного продукта от производителей к потребителям; при этом имеется ба­ланс между суммарным спросом потребителей и возмож­ностями поставщиков по их удовлетворению. Причем по­требителям безразлично, из каких пунктов производства будет поступать продукция, лишь бы их заявки были пол­ностью удовлетворены. Так как от схемы прикрепления потребителей к поставщикам существенно зависит объем транспортной работы, возникает задача о наиболее рацио­нальном прикреплении, правильном направлении перево­зок грузов, при котором потребности полностью удовлетворяются, вся продукция от поставщиков вывозится, а затраты на транспортировку минимальны.

5.5 Задача о размещении заказа.

Речь идет о задаче рас­пределения заказа (загрузки взаимозаменяемых групп оборудования) между предприятиями (цехами, станками, исполнителями) с различными производственными и тех­нологическими характеристиками, но взаимозаменяемыми в смысле выполнения заказа. Требуется составить план размещения заказа (загрузки оборудования), при кото­ром с имеющимися производственными возможностями заказ был бы выполнен, а показатель эффективности до­стигал экстремального значения.

§7. Анализ задачи об оптимальном использовании сырья.

 

Исходя из специализации и своих технологических возможностей предприятие может выступать четыре вида продукции. Сбыт любого количества обеспечен. Для изготовления этой продукции используются трудовые ресурсы, полуфабрикаты и станочное оборудование. Общий объём ресурсов, расход каждого ресурса за единицу продукции, приведены в таблице 1. Требуется определить план выпуска, доставляющий предприятию максимум прибыли. Выполнить после оптимизационный анализ решения и параметров модели.

Ресурсы Выпускаемая продукция

Объём

Ресурсов

Трудовые ресурсы, чел-ч 4 2 2 8 4800

Полуфабрикаты, кг 2 10 6 0 2400

Станочное оборудование, станко-ч 1 0 2 1 1500
Цена единицы продукции, р. 65 70 60 120

 

Решение.

Пусть - объёмы продукции планируемый к выпуску; - сумма ожидаемой выручки.

Математическая модель пря мой задачи:

Математическая модель двойственной задачи:

По условиям примера найти:


Информация о работе «Анализ экономических задач симплексным методом»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 33979
Количество таблиц: 2
Количество изображений: 2

Похожие работы

Скачать
34881
6
0

... во многих экономических задачах, приводит к линейной функции с линейными ограничениями, наложенными на неизвестные. 2. Области применения и ограничения использования линейного программирования для решения экономических задач Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление ...

Скачать
23748
27
0

... строки и каждого столбца таблицы (матрицы) определяют спе­циальные числа, называемые потенциалами. С помощью этих потен­циалов можно установить, нужно ли заполнять свободную клетку матрицы или ее нужно оставить незаполненной. Для решения задач методом потенциалов исходный план дол­жен иметь количество заполненных клеток m + n – 1 (m - число строк, n - число столбцов). Если план не отвечает этим ...

Скачать
47200
25
1

... рулонов, при котором все поступающие специальные заявки будут выполнены при минимальных затратах бумаги. Графический метод решения задач линейного программирования   1. Область решений линейных неравенств. Пусть задано линейное неравенство с двумя переменными  и (1) Если величины  и  рассматривать как координаты точки плоскости, то совокупность точек ...

Скачать
38887
29
13

... разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями. Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах ...

0 комментариев


Наверх